Goto

Collaborating Authors

 Pirozelli, Paulo


A RAG-Based Institutional Assistant

arXiv.org Artificial Intelligence

Although large language models (LLMs) demonstrate strong text generation capabilities, they struggle in scenarios requiring access to structured knowledge bases or specific documents, limiting their effectiveness in knowledge-intensive tasks. To address this limitation, retrieval-augmented generation (RAG) models have been developed, enabling generative models to incorporate relevant document fragments into their inputs. In this paper, we design and evaluate a RAG-based virtual assistant specifically tailored for the University of S\~ao Paulo. Our system architecture comprises two key modules: a retriever and a generative model. We experiment with different types of models for both components, adjusting hyperparameters such as chunk size and the number of retrieved documents. Our optimal retriever model achieves a Top-5 accuracy of 30%, while our most effective generative model scores 22.04\% against ground truth answers. Notably, when the correct document chunks are supplied to the LLMs, accuracy significantly improves to 54.02%, an increase of over 30 percentage points. Conversely, without contextual input, performance declines to 13.68%. These findings highlight the critical role of database access in enhancing LLM performance. They also reveal the limitations of current semantic search methods in accurately identifying relevant documents and underscore the ongoing challenges LLMs face in generating precise responses.


Question Answering with Texts and Tables through Deep Reinforcement Learning

arXiv.org Artificial Intelligence

This paper proposes a novel architecture to generate multi-hop answers to open domain questions that require information from texts and tables, using the Open Table-and-Text Question Answering dataset for validation and training. One of the most common ways to generate answers in this setting is to retrieve information sequentially, where a selected piece of data helps searching for the next piece. As different models can have distinct behaviors when called in this sequential information search, a challenge is how to select models at each step. Our architecture employs reinforcement learning to choose between different state-of-the-art tools sequentially until, in the end, a desired answer is generated. This system achieved an F1-score of 19.03, comparable to iterative systems in the literature.


Assessing Good, Bad and Ugly Arguments Generated by ChatGPT: a New Dataset, its Methodology and Associated Tasks

arXiv.org Artificial Intelligence

The recent success of Large Language Models (LLMs) has sparked concerns about their potential to spread misinformation. As a result, there is a pressing need for tools to identify ``fake arguments'' generated by such models. To create these tools, examples of texts generated by LLMs are needed. This paper introduces a methodology to obtain good, bad and ugly arguments from argumentative essays produced by ChatGPT, OpenAI's LLM. We then describe a novel dataset containing a set of diverse arguments, ArGPT. We assess the effectiveness of our dataset and establish baselines for several argumentation-related tasks. Finally, we show that the artificially generated data relates well to human argumentation and thus is useful as a tool to train and test systems for the defined tasks.


Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models

arXiv.org Artificial Intelligence

Logical reasoning is central to complex human activities, such as thinking, debating, and planning; it is also a central component of many AI systems as well. In this paper, we investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules. We ask whether those LMs can deduce theorems in propositional calculus and first-order logic; if their relative success in these problems reflects general logical capabilities; and which layers contribute the most to the task. First, we show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets. Next, by cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability, which suggests that they may have learned dataset-specific features, instead of a general capability. Finally, we conduct a layerwise probing experiment, which shows that the hypothesis classification task is mostly solved through higher layers.


Benchmarks for Pir\'a 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change

arXiv.org Artificial Intelligence

Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.