Goto

Collaborating Authors

 Ping Li


Möbius Transformation for Fast Inner Product Search on Graph

Neural Information Processing Systems

We present a fast search on graph algorithm for Maximum Inner Product Search (MIPS). This optimization problem is challenging since traditional Approximate Nearest Neighbor (ANN) search methods may not perform efficiently in the nonmetric similarity measure.



Exact Recovery of Hard Thresholding Pursuit

Neural Information Processing Systems

The HTP-style methods have been shown to have strong approximation guarantee and impressive numerical performance in high dimensional statistical learning applications. However, the current theoretical treatment of these methods has traditionally been restricted to the analysis of parameter estimation consistency. It remains an open problem to analyze the support recovery performance (a.k.a., sparsistency) of this type of methods for recovering the global minimizer of the original NP-hard problem. In this paper, we bridge this gap by showing, for the first time, that exact recovery of the global sparse minimizer is possible for HTP-style methods under restricted strong condition number bounding conditions. We further show that HTP-style methods are able to recover the support of certain relaxed sparse solutions without assuming bounded restricted strong condition number. Numerical results on simulated data confirms our theoretical predictions.


Quantized Random Projections and Non-Linear Estimation of Cosine Similarity

Neural Information Processing Systems

Random projections constitute a simple, yet effective technique for dimensionality reduction with applications in learning and search problems. In the present paper, we consider the problem of estimating cosine similarities when the projected data undergo scalar quantization to b bits. We here argue that the maximum likelihood estimator (MLE) is a principled approach to deal with the non-linearity resulting from quantization, and subsequently study its computational and statistical properties. A specific focus is on the on the trade-off between bit depth and the number of projections given a fixed budget of bits for storage or transmission. Along the way, we also touch upon the existence of a qualitative counterpart to the Johnson-Lindenstrauss lemma in the presence of quantization.


Simple strategies for recovering inner products from coarsely quantized random projections

Neural Information Processing Systems

Random projections have been increasingly adopted for a diverse set of tasks in machine learning involving dimensionality reduction. One specific line of research on this topic has investigated the use of quantization subsequent to projection with the aim of additional data compression. Motivated by applications in nearest neighbor search and linear learning, we revisit the problem of recovering inner products (respectively cosine similarities) in such setting. We show that even under coarse scalar quantization with 3 to 5 bits per projection, the loss in accuracy tends to range from "negligible" to "moderate". One implication is that in most scenarios of practical interest, there is no need for a sophisticated recovery approach like maximum likelihood estimation as considered in previous work on the subject. What we propose herein also yields considerable improvements in terms of accuracy over the Hamming distance-based approach in Li et al. (ICML 2014) which is comparable in terms of simplicity.


Partial Hard Thresholding: Towards A Principled Analysis of Support Recovery

Neural Information Processing Systems

In machine learning and compressed sensing, it is of central importance to understand when a tractable algorithm recovers the support of a sparse signal from its compressed measurements. In this paper, we present a principled analysis on the support recovery performance for a family of hard thresholding algorithms. To this end, we appeal to the partial hard thresholding (PHT) operator proposed recently by Jain et al. [IEEE Trans.


Recovery of Coherent Data via Low-Rank Dictionary Pursuit

Neural Information Processing Systems

The recently established RPCA [4] method provides a convenient way to restore low-rank matrices from grossly corrupted observations. While elegant in theory and powerful in reality, RPCA is not an ultimate solution to the low-rank matrix recovery problem. Indeed, its performance may not be perfect even when data are strictly low-rank. This is because RPCA ignores clustering structures of the data which are ubiquitous in applications. As the number of cluster grows, the coherence of data keeps increasing, and accordingly, the recovery performance of RPCA degrades.



Partial Hard Thresholding: Towards A Principled Analysis of Support Recovery

Neural Information Processing Systems

In machine learning and compressed sensing, it is of central importance to understand when a tractable algorithm recovers the support of a sparse signal from its compressed measurements. In this paper, we present a principled analysis on the support recovery performance for a family of hard thresholding algorithms. To this end, we appeal to the partial hard thresholding (PHT) operator proposed recently by Jain et al. [IEEE Trans.


Generalization Error Analysis of Quantized Compressive Learning

Neural Information Processing Systems

In this paper, we consider the learning problem where the projected data is further compressed by scalar quantization, which is called quantized compressive learning. Generalization error bounds are derived for three models: nearest neighbor (NN) classifier, linear classifier and least squares regression. Besides studying finite sample setting, our asymptotic analysis shows that the inner product estimators have deep connection with NN and linear classification problem through the variance of their debiased counterparts. By analyzing the extra error term brought by quantization, our results provide useful implications to the choice of quantizers in applications involving different learning tasks. Empirical study is also conducted to validate our theoretical findings.