Recovery of Coherent Data via Low-Rank Dictionary Pursuit

Guangcan Liu, Ping Li

Neural Information Processing Systems 

The recently established RPCA [4] method provides a convenient way to restore low-rank matrices from grossly corrupted observations. While elegant in theory and powerful in reality, RPCA is not an ultimate solution to the low-rank matrix recovery problem. Indeed, its performance may not be perfect even when data are strictly low-rank. This is because RPCA ignores clustering structures of the data which are ubiquitous in applications. As the number of cluster grows, the coherence of data keeps increasing, and accordingly, the recovery performance of RPCA degrades.