Pietquin, Olivier
Robust detection of overlapping bioacoustic sound events
Mahon, Louis, Hoffman, Benjamin, James, Logan S, Cusimano, Maddie, Hagiwara, Masato, Woolley, Sarah C, Pietquin, Olivier
We propose a method for accurately detecting bioacoustic sound events that is robust to overlapping events, a common issue in domains such as ethology, ecology and conservation. While standard methods employ a frame-based, multi-label approach, we introduce an onset-based detection method which we name Voxaboxen. It takes inspiration from object detection methods in computer vision, but simultaneously takes advantage of recent advances in self-supervised audio encoders. For each time window, Voxaboxen predicts whether it contains the start of a vocalization and how long the vocalization is. It also does the same in reverse, predicting whether each window contains the end of a vocalization, and how long ago it started. The two resulting sets of bounding boxes are then fused using a graph-matching algorithm. We also release a new dataset designed to measure performance on detecting overlapping vocalizations. This consists of recordings of zebra finches annotated with temporally-strong labels and showing frequent overlaps. We test Voxaboxen on seven existing data sets and on our new data set. We compare Voxaboxen to natural baselines and existing sound event detection methods and demonstrate SotA results. Further experiments show that improvements are robust to frequent vocalization overlap.
Synthetic data enables context-aware bioacoustic sound event detection
Hoffman, Benjamin, Robinson, David, Miron, Marius, Baglione, Vittorio, Canestrari, Daniela, Elias, Damian, Trapote, Eva, Pietquin, Olivier
We propose a methodology for training foundation models that enhances their in-context learning capabilities within the domain of bioacoustic signal processing. We use synthetically generated training data, introducing a domain-randomization-based pipeline that constructs diverse acoustic scenes with temporally strong labels. We generate over 8.8 thousand hours of strongly-labeled audio and train a query-by-example, transformer-based model to perform few-shot bioacoustic sound event detection. Our second contribution is a public benchmark of 13 diverse few-shot bioacoustics tasks. Our model outperforms previously published methods by 49%, and we demonstrate that this is due to both model design and data scale. We make our trained model available via an API, to provide ecologists and ethologists with a training-free tool for bioacoustic sound event detection.
NatureLM-audio: an Audio-Language Foundation Model for Bioacoustics
Robinson, David, Miron, Marius, Hagiwara, Masato, Pietquin, Olivier
Large language models (LLMs) prompted with text and audio represent the state of the art in various auditory tasks, including speech, music, and general audio, showing emergent abilities on unseen tasks. However, these capabilities have yet to be fully demonstrated in bioacoustics tasks, such as detecting animal vocalizations in large recordings, classifying rare and endangered species, and labeling context and behavior - tasks that are crucial for conservation, biodiversity monitoring, and the study of animal behavior. In this work, we present NatureLM-audio, the first audio-language foundation model specifically designed for bioacoustics. Our carefully curated training dataset comprises text-audio pairs spanning a diverse range of bioacoustics, speech, and music data, designed to address the challenges posed by limited annotated datasets in the field. We demonstrate successful transfer of learned representations from music and speech to bioacoustics, and our model shows promising generalization to unseen taxa and tasks. Importantly, we test NatureLM-audio on a novel benchmark (BEANS-Zero) and it sets the new state of the art (SotA) on several bioacoustics tasks, including zero-shot classification of unseen species. To advance bioacoustics research, we also open-source the code for generating training and benchmark data, as well as for training the model.
Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion
Flet-Berliac, Yannis, Grinsztajn, Nathan, Strub, Florian, Choi, Eugene, Cremer, Chris, Ahmadian, Arash, Chandak, Yash, Azar, Mohammad Gheshlaghi, Pietquin, Olivier, Geist, Matthieu
Reinforcement Learning (RL) has been used to finetune Large Language Models (LLMs) using a reward model trained from preference data, to better align with human judgment. The recently introduced direct alignment methods, which are often simpler, more stable, and computationally lighter, can more directly achieve this. However, these approaches cannot optimize arbitrary rewards, and the preference-based ones are not the only rewards of interest for LLMs (eg., unit tests for code generation or textual entailment for summarization, among others). RL-finetuning is usually done with a variation of policy gradient, which calls for on-policy or near-on-policy samples, requiring costly generations. We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data. It can be seen as an off-policy policy gradient approach that does not rely on important sampling techniques and highlights the importance of using (the right) state baseline. We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient. We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task, using a learned reward function considered as ground truth for the purpose of the experiments.
Countering Reward Over-optimization in LLM with Demonstration-Guided Reinforcement Learning
Rita, Mathieu, Strub, Florian, Chaabouni, Rahma, Michel, Paul, Dupoux, Emmanuel, Pietquin, Olivier
While Reinforcement Learning (RL) has been proven essential for tuning large language models (LLMs), it can lead to reward over-optimization (ROO). Existing approaches address ROO by adding KL regularization, requiring computationally expensive hyperparameter tuning. Additionally, KL regularization focuses solely on regularizing the language policy, neglecting a potential source of regularization: the reward function itself. Inspired by demonstration-guided RL, we here introduce the Reward Calibration from Demonstration (RCfD), which leverages human demonstrations and a reward model to recalibrate the reward objective. Formally, given a prompt, the RCfD objective minimizes the distance between the demonstrations' and LLM's rewards rather than directly maximizing the reward function. This objective shift avoids incentivizing the LLM to exploit the reward model and promotes more natural and diverse language generation. We show the effectiveness of RCfD on three language tasks, which achieves comparable performance to carefully tuned baselines while mitigating ROO.
Language Evolution with Deep Learning
Rita, Mathieu, Michel, Paul, Chaabouni, Rahma, Pietquin, Olivier, Dupoux, Emmanuel, Strub, Florian
Social animals have been found to use some means of communication to coordinate in various contexts: foraging for food, avoiding predators, mating, etc. (Hauser, 1996). Among animals, however, humans seem to be unique in having developed a communication system, natural language, that transcends these basic needs and can represent an infinite variety of new situations (Hauser et al., 2002) to the extent that language itself becomes the basis for a new form of evolution: cultural evolution. Understanding the emergence of this unique human ability has always been a vexing scientific problem due to the lack of access to the communication systems of intermediate steps of hominid evolution (Harnad et al., 1976; Bickerton, 2007). In the absence of data, a tempting idea has been to reproduce experimentally the process of language emergence in either humans or computational models (Steels, 1997; Myers-Scotton, 2002; Kirby, 2002). Experimental paradigms with humans (Kirby et al., 2008; Raviv et al., 2019; Motamedi et al., 2019) have produced significant insights into language evolution. Still, their scope is limited due to the inability to replicate key aspects of language evolution, such as communication within and across large populations and the study of long evolutionary timescales. Computer modeling can help overcome these limitations and has played a prominent role in studying language evolution for a long time (Lieberman and Crelin, 1971).
Population-aware Online Mirror Descent for Mean-Field Games by Deep Reinforcement Learning
Wu, Zida, Lauriere, Mathieu, Chua, Samuel Jia Cong, Geist, Matthieu, Pietquin, Olivier, Mehta, Ankur
Mean Field Games (MFGs) have the ability to handle large-scale multi-agent systems, but learning Nash equilibria in MFGs remains a challenging task. In this paper, we propose a deep reinforcement learning (DRL) algorithm that achieves population-dependent Nash equilibrium without the need for averaging or sampling from history, inspired by Munchausen RL and Online Mirror Descent. Through the design of an additional inner-loop replay buffer, the agents can effectively learn to achieve Nash equilibrium from any distribution, mitigating catastrophic forgetting. The resulting policy can be applied to various initial distributions. Numerical experiments on four canonical examples demonstrate our algorithm has better convergence properties than SOTA algorithms, in particular a DRL version of Fictitious Play for population-dependent policies.
Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs
Ahmadian, Arash, Cremer, Chris, Gallé, Matthias, Fadaee, Marzieh, Kreutzer, Julia, Pietquin, Olivier, Üstün, Ahmet, Hooker, Sara
AI alignment in the shape of Reinforcement Learning from Human Feedback (RLHF) is increasingly treated as a crucial ingredient for high performance large language models. Proximal Policy Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF. However, it involves both high computational cost and sensitive hyperparameter tuning. We posit that most of the motivational principles that led to the development of PPO are less of a practical concern in RLHF and advocate for a less computationally expensive method that preserves and even increases performance. We revisit the formulation of alignment from human preferences in the context of RL. Keeping simplicity as a guiding principle, we show that many components of PPO are unnecessary in an RLHF context and that far simpler REINFORCE-style optimization variants outperform both PPO and newly proposed "RL-free" methods such as DPO and RAFT. Our work suggests that careful adaptation to LLMs alignment characteristics enables benefiting from online RL optimization at low cost.
Learning in Mean Field Games: A Survey
Laurière, Mathieu, Perrin, Sarah, Pérolat, Julien, Girgin, Sertan, Muller, Paul, Élie, Romuald, Geist, Matthieu, Pietquin, Olivier
Non-cooperative and cooperative games with a very large number of players have many applications but remain generally intractable when the number of players increases. Introduced by Lasry and Lions, and Huang, Caines and Malham\'e, Mean Field Games (MFGs) rely on a mean-field approximation to allow the number of players to grow to infinity. Traditional methods for solving these games generally rely on solving partial or stochastic differential equations with a full knowledge of the model. Recently, Reinforcement Learning (RL) has appeared promising to solve complex problems at scale. The combination of RL and MFGs is promising to solve games at a very large scale both in terms of population size and environment complexity. In this survey, we review the quickly growing recent literature on RL methods to learn equilibria and social optima in MFGs. We first identify the most common settings (static, stationary, and evolutive) of MFGs. We then present a general framework for classical iterative methods (based on best-response computation or policy evaluation) to solve MFGs in an exact way. Building on these algorithms and the connection with Markov Decision Processes, we explain how RL can be used to learn MFG solutions in a model-free way. Last, we present numerical illustrations on a benchmark problem, and conclude with some perspectives.
MusicRL: Aligning Music Generation to Human Preferences
Cideron, Geoffrey, Girgin, Sertan, Verzetti, Mauro, Vincent, Damien, Kastelic, Matej, Borsos, Zalán, McWilliams, Brian, Ungureanu, Victor, Bachem, Olivier, Pietquin, Olivier, Geist, Matthieu, Hussenot, Léonard, Zeghidour, Neil, Agostinelli, Andrea
We propose MusicRL, the first music generation system finetuned from human feedback. Appreciation of text-to-music models is particularly subjective since the concept of musicality as well as the specific intention behind a caption are user-dependent (e.g. a caption such as "upbeat work-out music" can map to a retro guitar solo or a techno pop beat). Not only this makes supervised training of such models challenging, but it also calls for integrating continuous human feedback in their post-deployment finetuning. MusicRL is a pretrained autoregressive MusicLM (Agostinelli et al., 2023) model of discrete audio tokens finetuned with reinforcement learning to maximise sequence-level rewards. We design reward functions related specifically to text-adherence and audio quality with the help from selected raters, and use those to finetune MusicLM into MusicRL-R. We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences. Using Reinforcement Learning from Human Feedback (RLHF), we train MusicRL-U, the first text-to-music model that incorporates human feedback at scale. Human evaluations show that both MusicRL-R and MusicRL-U are preferred to the baseline. Ultimately, MusicRL-RU combines the two approaches and results in the best model according to human raters. Ablation studies shed light on the musical attributes influencing human preferences, indicating that text adherence and quality only account for a part of it. This underscores the prevalence of subjectivity in musical appreciation and calls for further involvement of human listeners in the finetuning of music generation models.