Phan, Hoang
DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation
Phung, Hao, Dao, Quan, Dao, Trung, Phan, Hoang, Metaxas, Dimitris, Tran, Anh
We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git.
Leveraging Hierarchical Taxonomies in Prompt-based Continual Learning
Tran, Quyen, Phan, Hoang, Le, Minh, Truong, Tuan, Phung, Dinh, Ngo, Linh, Nguyen, Thien, Ho, Nhat, Le, Trung
Drawing inspiration from human learning behaviors, this work proposes a novel approach to mitigate catastrophic forgetting in Prompt-based Continual Learning models by exploiting the relationships between continuously emerging class data. We find that applying human habits of organizing and connecting information can serve as an efficient strategy when training deep learning models. Specifically, by building a hierarchical tree structure based on the expanding set of labels, we gain fresh insights into the data, identifying groups of similar classes could easily cause confusion. Additionally, we delve deeper into the hidden connections between classes by exploring the original pretrained model's behavior through an optimal transport-based approach. From these insights, we propose a novel regularization loss function that encourages models to focus more on challenging knowledge areas, thereby enhancing overall performance. Experimentally, our method demonstrated significant superiority over the most robust state-of-the-art models on various benchmarks.
Unveiling Concept Attribution in Diffusion Models
Nguyen, Quang H., Phan, Hoang, Doan, Khoa D.
Diffusion models have shown remarkable abilities in generating realistic and high-quality images from text prompts. However, a trained model remains black-box; little do we know about the role of its components in exhibiting a concept such as objects or styles. Recent works employ causal tracing to localize layers storing knowledge in generative models without showing how those layers contribute to the target concept. In this work, we approach the model interpretability problem from a more general perspective and pose a question: \textit{``How do model components work jointly to demonstrate knowledge?''}. We adapt component attribution to decompose diffusion models, unveiling how a component contributes to a concept. Our framework allows effective model editing, in particular, we can erase a concept from diffusion models by removing positive components while remaining knowledge of other concepts. Surprisingly, we also show there exist components that contribute negatively to a concept, which has not been discovered in the knowledge localization approach. Experimental results confirm the role of positive and negative components pinpointed by our framework, depicting a complete view of interpreting generative models. Our code is available at \url{https://github.com/mail-research/CAD-attribution4diffusion}
Controllable Prompt Tuning For Balancing Group Distributional Robustness
Phan, Hoang, Wilson, Andrew Gordon, Lei, Qi
Models trained on data composed of different groups or domains can suffer from severe performance degradation under distribution shifts. While recent methods have largely focused on optimizing the worst-group objective, this often comes at the expense of good performance on other groups. To address this problem, we introduce an optimization scheme to achieve good performance across groups and find a good solution for all without severely sacrificing performance on any of them. However, directly applying such optimization involves updating the parameters of the entire network, making it both computationally expensive and challenging. Thus, we introduce Controllable Prompt Tuning (CPT), which couples our approach with prompt-tuning techniques. On spurious correlation benchmarks, our procedures achieve state-of-the-art results across both transformer and non-transformer architectures, as well as unimodal and multimodal data, while requiring only 0.4% tunable parameters.
Robust Contrastive Learning With Theory Guarantee
Tran, Ngoc N., Tran, Lam, Phan, Hoang, Bui, Anh, Pham, Tung, Tran, Toan, Phung, Dinh, Le, Trung
Contrastive learning (CL) allows us to create meaningful features without any label information. In the first phase, CL approaches learn the features, which are then classified by a linear classifier that has been learned from labeled data. While existing theoretical works have studied the connection between the supervised loss in the second phase and the unsupervised loss in the first phase to explain why the unsupervised loss can support the supervised loss, there has been no theoretical examination of the connection between the unsupervised loss in the first phase and the robust supervised loss in the second phase, which can shed light on how to establish an effective unsupervised loss in the first phase. To fill this gap, our paper develops rigorous theories to identify which components in the supervised loss can aid the robust supervised loss. Finally, we conduct experiments to verify our findings. All code used in this work is available at https://anonymous.4open.science/r/rosa.
Flat Seeking Bayesian Neural Networks
Nguyen, Van-Anh, Vuong, Tung-Long, Phan, Hoang, Do, Thanh-Toan, Phung, Dinh, Le, Trung
Bayesian Neural Networks (BNNs) provide a probabilistic interpretation for deep learning models by imposing a prior distribution over model parameters and inferring a posterior distribution based on observed data. The model sampled from the posterior distribution can be used for providing ensemble predictions and quantifying prediction uncertainty. It is well-known that deep learning models with lower sharpness have better generalization ability. However, existing posterior inferences are not aware of sharpness/flatness in terms of formulation, possibly leading to high sharpness for the models sampled from them. In this paper, we develop theories, the Bayesian setting, and the variational inference approach for the sharpness-aware posterior. Specifically, the models sampled from our sharpness-aware posterior, and the optimal approximate posterior estimating this sharpness-aware posterior, have better flatness, hence possibly possessing higher generalization ability. We conduct experiments by leveraging the sharpness-aware posterior with state-of-the-art Bayesian Neural Networks, showing that the flat-seeking counterparts outperform their baselines in all metrics of interest.
Improving Multi-task Learning via Seeking Task-based Flat Regions
Phan, Hoang, Tran, Lam, Tran, Ngoc N., Ho, Nhat, Phung, Dinh, Le, Trung
Multi-Task Learning (MTL) is a widely-used and powerful learning paradigm for training deep neural networks that allows learning more than one objective by a single backbone. Compared to training tasks separately, MTL significantly reduces computational costs, improves data efficiency, and potentially enhances model performance by leveraging knowledge across tasks. Hence, it has been adopted in a variety of applications, ranging from computer vision to natural language processing and speech recognition. Among them, there is an emerging line of work in MTL that focuses on manipulating the task gradient to derive an ultimate gradient descent direction to benefit all tasks. Despite achieving impressive results on many benchmarks, directly applying these approaches without using appropriate regularization techniques might lead to suboptimal solutions on real-world problems. In particular, standard training that minimizes the empirical loss on the training data can easily suffer from overfitting to low-resource tasks or be spoiled by noisy-labeled ones, which can cause negative transfer between tasks and overall performance drop. To alleviate such problems, we propose to leverage a recently introduced training method, named Sharpness-aware Minimization, which can enhance model generalization ability on single-task learning. Accordingly, we present a novel MTL training methodology, encouraging the model to find task-based flat minima for coherently improving its generalization capability on all tasks. Finally, we conduct comprehensive experiments on a variety of applications to demonstrate the merit of our proposed approach to existing gradient-based MTL methods, as suggested by our developed theory.
Full High-Dimensional Intelligible Learning In 2-D Lossless Visualization Space
Kovalerchuk, Boris, Phan, Hoang
This study explores a new methodology for machine learning classification tasks in 2-dimensional visualization space (2-D ML) using Visual knowledge Discovery in lossless General Line Coordinates. It is shown that this is a full machine learning approach that does not require processing n-dimensional data in an abstract n-dimensional space. It enables discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D. Specifically, this study shows that it can be done with static and dynamic In-line Based Coordinates in different modifications, which are a category of General Line Coordinates. Based on these inline coordinates, classification and regression methods were developed. The viability of the strategy was shown by two case studies based on benchmark datasets (Wisconsin Breast Cancer and Page Block Classification datasets). The characteristics of page block classification data led to the development of an algorithm for imbalanced high-resolution data with multiple classes, which exploits the decision trees as a model design facilitator producing a model, which is more general than a decision tree. This work accelerates the ongoing consolidation of an emerging field of full 2-D machine learning and its methodology. Within this methodology the end users can discover models and justify them as self-service. Providing interpretable ML models is another benefit of this approach.
Global-Local Regularization Via Distributional Robustness
Phan, Hoang, Le, Trung, Phung, Trung, Bui, Tuan Anh, Ho, Nhat, Phung, Dinh
Despite superior performance in many situations, deep neural networks are often vulnerable to adversarial examples and distribution shifts, limiting model generalization ability in real-world applications. To alleviate these problems, recent approaches leverage distributional robustness optimization (DRO) to find the most challenging distribution, and then minimize loss function over this most challenging distribution. Regardless of achieving some improvements, these DRO approaches have some obvious limitations. First, they purely focus on local regularization to strengthen model robustness, missing a global regularization effect which is useful in many real-world applications (e.g., domain adaptation, domain generalization, and adversarial machine learning). Second, the loss functions in the existing DRO approaches operate in only the most challenging distribution, hence decouple with the original distribution, leading to a restrictive modeling capability. In this paper, we propose a novel regularization technique, following the veins of Wasserstein-based DRO framework. Specifically, we define a particular joint distribution and Wasserstein-based uncertainty, allowing us to couple the original and most challenging distributions for enhancing modeling capability and applying both local and global regularizations. Empirical studies on different learning problems demonstrate that our proposed approach significantly outperforms the existing regularization approaches in various domains: semi-supervised learning, domain adaptation, domain generalization, and adversarial machine learning.
Stochastic Multiple Target Sampling Gradient Descent
Phan, Hoang, Tran, Ngoc, Le, Trung, Tran, Toan, Ho, Nhat, Phung, Dinh
Sampling from an unnormalized target distribution is an essential problem with many applications in probabilistic inference. Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest. Furthermore, when analysing its asymptotic properties, SVGD reduces exactly to a single-objective optimization problem and can be viewed as a probabilistic version of this single-objective optimization problem. A natural question then arises: "Can we derive a probabilistic version of the multi-objective optimization?". To answer this question, we propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions. Specifically, our MT-SGD conducts a flow of intermediate distributions gradually orienting to multiple target distributions, which allows the sampled particles to move to the joint high-likelihood region of the target distributions. Interestingly, the asymptotic analysis shows that our approach reduces exactly to the multiple-gradient descent algorithm for multi-objective optimization, as expected. Finally, we conduct comprehensive experiments to demonstrate the merit of our approach to multi-task learning.