Pham, Quoc-Viet
Right Reward Right Time for Federated Learning
Nguyen, Thanh Linh, Hoang, Dinh Thai, Nguyen, Diep N., Pham, Quoc-Viet
Critical learning periods (CLPs) in federated learning (FL) refer to early stages during which low-quality contributions (e.g., sparse training data availability) can permanently impair the learning performance of the global model owned by the model owner (i.e., the cloud server). However, strategies to motivate clients with high-quality contributions to join the FL training process and share trained model updates during CLPs remain underexplored. Additionally, existing incentive mechanisms in FL treat all training periods equally, which consequently fails to motivate clients to participate early. Compounding this challenge is the cloud's limited knowledge of client training capabilities due to privacy regulations, leading to information asymmetry. Therefore, in this article, we propose a time-aware incentive mechanism, called Right Reward Right Time (R3T), to encourage client involvement, especially during CLPs, to maximize the utility of the cloud in FL. Specifically, the cloud utility function captures the trade-off between the achieved model performance and payments allocated for clients' contributions, while accounting for clients' time and system capabilities, efforts, joining time, and rewards. Then, we analytically derive the optimal contract for the cloud and devise a CLP-aware mechanism to incentivize early participation and efforts while maximizing cloud utility, even under information asymmetry. By providing the right reward at the right time, our approach can attract the highest-quality contributions during CLPs. Simulation and proof-of-concept studies show that R3T increases cloud utility and is more economically effective than benchmarks. Notably, our proof-of-concept results show up to a 47.6% reduction in the total number of clients and up to a 300% improvement in convergence time while reaching competitive test accuracies compared with incentive mechanism benchmarks.
Federated Domain Generalization with Data-free On-server Gradient Matching
Nguyen, Trong-Binh, Nguyen, Minh-Duong, Park, Jinsun, Pham, Quoc-Viet, Hwang, Won Joo
Domain Generalization (DG) aims to learn from multiple known source domains a model that can generalize well to unknown target domains. One of the key approaches in DG is training an encoder which generates domain-invariant representations. However, this approach is not applicable in Federated Domain Generalization (FDG), where data from various domains are distributed across different clients. In this paper, we introduce a novel approach, dubbed Federated Learning via On-server Matching Gradient (FedOMG), which can \emph{efficiently leverage domain information from distributed domains}. Specifically, we utilize the local gradients as information about the distributed models to find an invariant gradient direction across all domains through gradient inner product maximization. The advantages are two-fold: 1) FedOMG can aggregate the characteristics of distributed models on the centralized server without incurring any additional communication cost, and 2) FedOMG is orthogonal to many existing FL/FDG methods, allowing for additional performance improvements by being seamlessly integrated with them. Extensive experimental evaluations on various settings to demonstrate the robustness of FedOMG compared to other FL/FDG baselines. Our method outperforms recent SOTA baselines on four FL benchmark datasets (MNIST, EMNIST, CIFAR-10, and CIFAR-100), and three FDG benchmark datasets (PACS, VLCS, and OfficeHome).
Multi-Agent Collaboration Mechanisms: A Survey of LLMs
Tran, Khanh-Tung, Dao, Dung, Nguyen, Minh-Duong, Pham, Quoc-Viet, O'Sullivan, Barry, Nguyen, Hoang D.
With recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.
Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning
Van Huynh, Nguyen, Zhang, Bolun, Tran, Dinh-Hieu, Hoang, Dinh Thai, Nguyen, Diep N., Zheng, Gan, Niyato, Dusit, Pham, Quoc-Viet
Spectrum access is an essential problem in device-to-device (D2D) communications. However, with the recent growth in the number of mobile devices, the wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications. To address this problem, this paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals to transmit their data when the shared spectrum is occupied by mobile users. To obtain the optimal spectrum access policy, i.e., stay idle or access the shared spectrum and perform active transmissions or backscattering ambient RF signals for transmissions, to maximize the average throughput for D2D users, deep reinforcement learning (DRL) can be adopted. However, DRL-based solutions may require long training time due to the curse of dimensionality issue as well as complex deep neural network architectures. For that, we develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters compared to DRL thanks to the quantum superposition and quantum entanglement principles. Specifically, instead of using conventional deep neural networks, the proposed quantum RL algorithm uses a parametrized quantum circuit to approximate an optimal policy. Extensive simulations then demonstrate that the proposed solution not only can significantly improve the average throughput of D2D devices when the shared spectrum is busy but also can achieve much better performance in terms of convergence rate and learning complexity compared to existing DRL-based methods.
A Survey on Intelligent Internet of Things: Applications, Security, Privacy, and Future Directions
Aouedi, Ons, Vu, Thai-Hoc, Sacco, Alessio, Nguyen, Dinh C., Piamrat, Kandaraj, Marchetto, Guido, Pham, Quoc-Viet
The rapid advances in the Internet of Things (IoT) have promoted a revolution in communication technology and offered various customer services. Artificial intelligence (AI) techniques have been exploited to facilitate IoT operations and maximize their potential in modern application scenarios. In particular, the convergence of IoT and AI has led to a new networking paradigm called Intelligent IoT (IIoT), which has the potential to significantly transform businesses and industrial domains. This paper presents a comprehensive survey of IIoT by investigating its significant applications in mobile networks, as well as its associated security and privacy issues. Specifically, we explore and discuss the roles of IIoT in a wide range of key application domains, from smart healthcare and smart cities to smart transportation and smart industries. Through such extensive discussions, we investigate important security issues in IIoT networks, where network attacks, confidentiality, integrity, and intrusion are analyzed, along with a discussion of potential countermeasures. Privacy issues in IIoT networks were also surveyed and discussed, including data, location, and model privacy leakage. Finally, we outline several key challenges and highlight potential research directions in this important area.
Applications of Generative AI (GAI) for Mobile and Wireless Networking: A Survey
Vu, Thai-Hoc, Jagatheesaperumal, Senthil Kumar, Nguyen, Minh-Duong, Van Huynh, Nguyen, Kim, Sunghwan, Pham, Quoc-Viet
The success of Artificial Intelligence (AI) in multiple disciplines and vertical domains in recent years has promoted the evolution of mobile networking and the future Internet toward an AI-integrated Internet-of-Things (IoT) era. Nevertheless, most AI techniques rely on data generated by physical devices (e.g., mobile devices and network nodes) or specific applications (e.g., fitness trackers and mobile gaming). To bypass this circumvent, Generative AI (GAI), a.k.a. AI-generated content (AIGC), has emerged as a powerful AI paradigm; thanks to its ability to efficiently learn complex data distributions and generate synthetic data to represent the original data in various forms. This impressive feature is projected to transform the management of mobile networking and diversify the current services and applications provided. On this basis, this work presents a concise tutorial on the role of GAIs in mobile and wireless networking. In particular, this survey first provides the fundamentals of GAI and representative GAI models, serving as an essential preliminary to the understanding of the applications of GAI in mobile and wireless networking. Then, this work provides a comprehensive review of state-of-the-art studies and GAI applications in network management, wireless security, semantic communication, and lessons learned from the open literature. Finally, this work summarizes the current research on GAI for mobile and wireless networking by outlining important challenges that need to be resolved to facilitate the development and applicability of GAI in this edge-cutting area.
Revisiting LARS for Large Batch Training Generalization of Neural Networks
Do, Khoi, Nguyen, Duong, Nguyen, Hoa, Tran-Thanh, Long, Pham, Quoc-Viet
This paper explores Large Batch Training techniques using layer-wise adaptive scaling ratio (LARS) across diverse settings, uncovering insights. LARS algorithms with warm-up tend to be trapped in sharp minimizers early on due to redundant ratio scaling. Additionally, a fixed steep decline in the latter phase restricts deep neural networks from effectively navigating early-phase sharp minimizers. Building on these findings, we propose Time Varying LARS (TVLARS), a novel algorithm that replaces warm-up with a configurable sigmoid-like function for robust training in the initial phase. TVLARS promotes gradient exploration early on, surpassing sharp optimizers and gradually transitioning to LARS for robustness in later phases. Extensive experiments demonstrate that TVLARS consistently outperforms LARS and LAMB in most cases, with up to 2\% improvement in classification scenarios. Notably, in all self-supervised learning cases, TVLARS dominates LARS and LAMB with performance improvements of up to 10\%.
Sample-Driven Federated Learning for Energy-Efficient and Real-Time IoT Sensing
Luu, Minh Ngoc, Nguyen, Minh-Duong, Bedeer, Ebrahim, Nguyen, Van Duc, Hoang, Dinh Thai, Nguyen, Diep N., Pham, Quoc-Viet
In the domain of Federated Learning (FL) systems, recent cutting-edge methods heavily rely on ideal conditions convergence analysis. Specifically, these approaches assume that the training datasets on IoT devices possess similar attributes to the global data distribution. However, this approach fails to capture the full spectrum of data characteristics in real-time sensing FL systems. In order to overcome this limitation, we suggest a new approach system specifically designed for IoT networks with real-time sensing capabilities. Our approach takes into account the generalization gap due to the user's data sampling process. By effectively controlling this sampling process, we can mitigate the overfitting issue and improve overall accuracy. In particular, We first formulate an optimization problem that harnesses the sampling process to concurrently reduce overfitting while maximizing accuracy. In pursuit of this objective, our surrogate optimization problem is adept at handling energy efficiency while optimizing the accuracy with high generalization. To solve the optimization problem with high complexity, we introduce an online reinforcement learning algorithm, named Sample-driven Control for Federated Learning (SCFL) built on the Soft Actor-Critic (A2C) framework. This enables the agent to dynamically adapt and find the global optima even in changing environments. By leveraging the capabilities of SCFL, our system offers a promising solution for resource allocation in FL systems with real-time sensing capabilities.
Joint Communication and Computation Framework for Goal-Oriented Semantic Communication with Distortion Rate Resilience
Nguyen, Minh-Duong, Do, Quang-Vinh, Yang, Zhaohui, Pham, Quoc-Viet, Hwang, Won-Joo
Recent research efforts on semantic communication have mostly considered accuracy as a main problem for optimizing goal-oriented communication systems. However, these approaches introduce a paradox: the accuracy of artificial intelligence (AI) tasks should naturally emerge through training rather than being dictated by network constraints. Acknowledging this dilemma, this work introduces an innovative approach that leverages the rate-distortion theory to analyze distortions induced by communication and semantic compression, thereby analyzing the learning process. Specifically, we examine the distribution shift between the original data and the distorted data, thus assessing its impact on the AI model's performance. Founding upon this analysis, we can preemptively estimate the empirical accuracy of AI tasks, making the goal-oriented semantic communication problem feasible. To achieve this objective, we present the theoretical foundation of our approach, accompanied by simulations and experiments that demonstrate its effectiveness. The experimental results indicate that our proposed method enables accurate AI task performance while adhering to network constraints, establishing it as a valuable contribution to the field of signal processing. Furthermore, this work advances research in goal-oriented semantic communication and highlights the significance of data-driven approaches in optimizing the performance of intelligent systems.
Wirelessly Powered Federated Learning Networks: Joint Power Transfer, Data Sensing, Model Training, and Resource Allocation
Le, Mai, Hoang, Dinh Thai, Nguyen, Diep N., Hwang, Won-Joo, Pham, Quoc-Viet
Federated learning (FL) has found many successes in wireless networks; however, the implementation of FL has been hindered by the energy limitation of mobile devices (MDs) and the availability of training data at MDs. How to integrate wireless power transfer and mobile crowdsensing towards sustainable FL solutions is a research topic entirely missing from the open literature. This work for the first time investigates a resource allocation problem in collaborative sensing-assisted sustainable FL (S2FL) networks with the goal of minimizing the total completion time. We investigate a practical harvesting-sensing-training-transmitting protocol in which energy-limited MDs first harvest energy from RF signals, use it to gain a reward for user participation, sense the training data from the environment, train the local models at MDs, and transmit the model updates to the server. The total completion time minimization problem of jointly optimizing power transfer, transmit power allocation, data sensing, bandwidth allocation, local model training, and data transmission is complicated due to the non-convex objective function, highly non-convex constraints, and strongly coupled variables. We propose a computationally-efficient path-following algorithm to obtain the optimal solution via the decomposition technique. In particular, inner convex approximations are developed for the resource allocation subproblem, and the subproblems are performed alternatively in an iterative fashion. Simulation results are provided to evaluate the effectiveness of the proposed S2FL algorithm in reducing the completion time up to 21.45% in comparison with other benchmark schemes. Further, we investigate an extension of our work from frequency division multiple access (FDMA) to non-orthogonal multiple access (NOMA) and show that NOMA can speed up the total completion time 8.36% on average of the considered FL system.