Pham, Cuong
REM: A Scalable Reinforced Multi-Expert Framework for Multiplex Influence Maximization
Nguyen, Huyen, Dam, Hieu, Do, Nguyen, Tran, Cong, Pham, Cuong
In social online platforms, identifying influential seed users to maximize influence spread is a crucial as it can greatly diminish the cost and efforts required for information dissemination. While effective, traditional methods for Multiplex Influence Maximization (MIM) have reached their performance limits, prompting the emergence of learning-based approaches. These novel methods aim for better generalization and scalability for more sizable graphs but face significant challenges, such as (1) inability to handle unknown diffusion patterns and (2) reliance on high-quality training samples. To address these issues, we propose the Reinforced Expert Maximization framework (REM). REM leverages a Propagation Mixture of Experts technique to encode dynamic propagation of large multiplex networks effectively in order to generate enhanced influence propagation. Noticeably, REM treats a generative model as a policy to autonomously generate different seed sets and learn how to improve them from a Reinforcement Learning perspective. Extensive experiments on several real-world datasets demonstrate that REM surpasses state-of-the-art methods in terms of influence spread, scalability, and inference time in influence maximization tasks.
Innovative Silicosis and Pneumonia Classification: Leveraging Graph Transformer Post-hoc Modeling and Ensemble Techniques
Bui, Bao Q., Nguyen, Tien T. T., Le, Duy M., Tran, Cong, Pham, Cuong
This paper presents a comprehensive study on the classification and detection of Silicosis-related lung inflammation. Our main contributions include 1) the creation of a newly curated chest X-ray (CXR) image dataset named SVBCX that is tailored to the nuances of lung inflammation caused by distinct agents, providing a valuable resource for silicosis and pneumonia research community; and 2) we propose a novel deep-learning architecture that integrates graph transformer networks alongside a traditional deep neural network module for the effective classification of silicosis and pneumonia. Additionally, we employ the Balanced Cross-Entropy (BalCE) as a loss function to ensure more uniform learning across different classes, enhancing the model's ability to discern subtle differences in lung conditions. The proposed model architecture and loss function selection aim to improve the accuracy and reliability of inflammation detection, particularly in the context of Silicosis. Furthermore, our research explores the efficacy of an ensemble approach that combines the strengths of diverse model architectures. Experimental results on the constructed dataset demonstrate promising outcomes, showcasing substantial enhancements compared to baseline models. The ensemble of models achieves a macro-F1 score of 0.9749 and AUC ROC scores exceeding 0.99 for each class, underscoring the effectiveness of our approach in accurate and robust lung inflammation classification.
Model and Feature Diversity for Bayesian Neural Networks in Mutual Learning
Pham, Cuong, Nguyen, Cuong C., Le, Trung, Phung, Dinh, Carneiro, Gustavo, Do, Thanh-Toan
Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Utilizing mutual learning can effectively enhance the performance of peer BNNs. In this paper, we propose a novel approach to improve BNNs performance through deep mutual learning. The proposed approaches aim to increase diversity in both network parameter distributions and feature distributions, promoting peer networks to acquire distinct features that capture different characteristics of the input, which enhances the effectiveness of mutual learning. Experimental results demonstrate significant improvements in the classification accuracy, negative log-likelihood, and expected calibration error when compared to traditional mutual learning for BNNs.
OpenSUN3D: 1st Workshop Challenge on Open-Vocabulary 3D Scene Understanding
Engelmann, Francis, Takmaz, Ayca, Schult, Jonas, Fedele, Elisabetta, Wald, Johanna, Peng, Songyou, Wang, Xi, Litany, Or, Tang, Siyu, Tombari, Federico, Pollefeys, Marc, Guibas, Leonidas, Tian, Hongbo, Wang, Chunjie, Yan, Xiaosheng, Wang, Bingwen, Zhang, Xuanyang, Liu, Xiao, Nguyen, Phuc, Nguyen, Khoi, Tran, Anh, Pham, Cuong, Huang, Zhening, Wu, Xiaoyang, Chen, Xi, Zhao, Hengshuang, Zhu, Lei, Lasenby, Joan
This report provides an overview of the challenge hosted at the OpenSUN3D Workshop on Open-Vocabulary 3D Scene Understanding held in conjunction with ICCV 2023. The goal of this workshop series is to provide a platform for exploration and discussion of open-vocabulary 3D scene understanding tasks, including but not limited to segmentation, detection and mapping. We provide an overview of the challenge hosted at the workshop, present the challenge dataset, the evaluation methodology, and brief descriptions of the winning methods. Additional details are available on the OpenSUN3D workshop website.
Count What You Want: Exemplar Identification and Few-shot Counting of Human Actions in the Wild
Huang, Yifeng, Nguyen, Duc Duy, Nguyen, Lam, Pham, Cuong, Hoai, Minh
This paper addresses the task of counting human actions of interest using sensor data from wearable devices. We propose a novel exemplar-based framework, allowing users to provide exemplars of the actions they want to count by vocalizing predefined sounds ''one'', ''two'', and ''three''. Our method first localizes temporal positions of these utterances from the audio sequence. These positions serve as the basis for identifying exemplars representing the action class of interest. A similarity map is then computed between the exemplars and the entire sensor data sequence, which is further fed into a density estimation module to generate a sequence of estimated density values. Summing these density values provides the final count. To develop and evaluate our approach, we introduce a diverse and realistic dataset consisting of real-world data from 37 subjects and 50 action categories, encompassing both sensor and audio data. The experiments on this dataset demonstrate the viability of the proposed method in counting instances of actions from new classes and subjects that were not part of the training data. On average, the discrepancy between the predicted count and the ground truth value is 7.47, significantly lower than the errors of the frequency-based and transformer-based methods. Our project, code and dataset can be found at https://github.com/cvlab-stonybrook/ExRAC.
Virtual Fusion with Contrastive Learning for Single Sensor-based Activity Recognition
Nguyen, Duc-Anh, Pham, Cuong, Le-Khac, Nhien-An
Various types of sensors can be used for Human Activity Recognition (HAR), and each of them has different strengths and weaknesses. Sometimes a single sensor cannot fully observe the user's motions from its perspective, which causes wrong predictions. While sensor fusion provides more information for HAR, it comes with many inherent drawbacks like user privacy and acceptance, costly set-up, operation, and maintenance. To deal with this problem, we propose Virtual Fusion - a new method that takes advantage of unlabeled data from multiple time-synchronized sensors during training, but only needs one sensor for inference. Contrastive learning is adopted to exploit the correlation among sensors. Virtual Fusion gives significantly better accuracy than training with the same single sensor, and in some cases, it even surpasses actual fusion using multiple sensors at test time. We also extend this method to a more general version called Actual Fusion within Virtual Fusion (AFVF), which uses a subset of training sensors during inference. Our method achieves state-of-the-art accuracy and F1-score on UCI-HAR and PAMAP2 benchmark datasets. Implementation is available upon request.
UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with Geometric Topology Guidance
Tran, Son, Tran, Cong, Tran, Anh, Pham, Cuong
Object detection has long been a topic of high interest in computer vision literature. Motivated by the fact that annotating data for the multi-object tracking (MOT) problem is immensely expensive, recent studies have turned their attention to the unsupervised learning setting. In this paper, we push forward the state-of-the-art performance of unsupervised MOT methods by proposing UnsMOT, a novel framework that explicitly combines the appearance and motion features of objects with geometric information to provide more accurate tracking. Specifically, we first extract the appearance and motion features using CNN and RNN models, respectively. Then, we construct a graph of objects based on their relative distances in a frame, which is fed into a GNN model together with CNN features to output geometric embedding of objects optimized using an unsupervised loss function. Finally, associations between objects are found by matching not only similar extracted features but also geometric embedding of detections and tracklets. Experimental results show remarkable performance in terms of HOTA, IDF1, and MOTA metrics in comparison with state-of-the-art methods.
Federated Few-shot Learning for Cough Classification with Edge Devices
Hoang, Ngan Dao, Tran-Anh, Dat, Luong, Manh, Tran, Cong, Pham, Cuong
Automatically classifying cough sounds is one of the most critical tasks for the diagnosis and treatment of respiratory diseases. However, collecting a huge amount of labeled cough dataset is challenging mainly due to high laborious expenses, data scarcity, and privacy concerns. In this work, our aim is to develop a framework that can effectively perform cough classification even in situations when enormous cough data is not available, while also addressing privacy concerns. Specifically, we formulate a new problem to tackle these challenges and adopt few-shot learning and federated learning to design a novel framework, termed F2LCough, for solving the newly formulated problem. We illustrate the superiority of our method compared with other approaches on COVID-19 Thermal Face & Cough dataset, in which F2LCough achieves an average F1-Score of 86%. Our results show the feasibility of few-shot learning combined with federated learning to build a classification model of cough sounds. This new methodology is able to classify cough sounds in data-scarce situations and maintain privacy properties. The outcomes of this work can be a fundamental framework for building support systems for the detection and diagnosis of cough-related diseases.
HyperCUT: Video Sequence from a Single Blurry Image using Unsupervised Ordering
Pham, Bang-Dang, Tran, Phong, Tran, Anh, Pham, Cuong, Nguyen, Rang, Hoai, Minh
We consider the challenging task of training models for image-to-video deblurring, which aims to recover a sequence of sharp images corresponding to a given blurry image input. A critical issue disturbing the training of an image-to-video model is the ambiguity of the frame ordering since both the forward and backward sequences are plausible solutions. This paper proposes an effective self-supervised ordering scheme that allows training high-quality image-to-video deblurring models. Unlike previous methods that rely on order-invariant losses, we assign an explicit order for each video sequence, thus avoiding the order-ambiguity issue. Specifically, we map each video sequence to a vector in a latent high-dimensional space so that there exists a hyperplane such that for every video sequence, the vectors extracted from it and its reversed sequence are on different sides of the hyperplane. The side of the vectors will be used to define the order of the corresponding sequence. Last but not least, we propose a real-image dataset for the image-to-video deblurring problem that covers a variety of popular domains, including face, hand, and street. Extensive experimental results confirm the effectiveness of our method. Code and data are available at https://github.com/VinAIResearch/HyperCUT.git
QC-StyleGAN -- Quality Controllable Image Generation and Manipulation
Nguyen, Dat Viet Thanh, The, Phong Tran, Dinh, Tan M., Pham, Cuong, Tran, Anh Tuan
The introduction of high-quality image generation models, particularly the Style-GAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation.