Goto

Collaborating Authors

 Petridis, Stavros


KeyFace: Expressive Audio-Driven Facial Animation for Long Sequences via KeyFrame Interpolation

arXiv.org Artificial Intelligence

Current audio-driven facial animation methods achieve impressive results for short videos but suffer from error accumulation and identity drift when extended to longer durations. Existing methods attempt to mitigate this through external spatial control, increasing long-term consistency but compromising the naturalness of motion. We propose KeyFace, a novel two-stage diffusion-based framework, to address these issues. In the first stage, keyframes are generated at a low frame rate, conditioned on audio input and an identity frame, to capture essential facial expressions and movements over extended periods of time. In the second stage, an interpolation model fills in the gaps between keyframes, ensuring smooth transitions and temporal coherence. To further enhance realism, we incorporate continuous emotion representations and handle a wide range of non-speech vocalizations (NSVs), such as laughter and sighs. We also introduce two new evaluation metrics for assessing lip synchronization and NSV generation. Experimental results show that KeyFace outperforms state-of-the-art methods in generating natural, coherent facial animations over extended durations, successfully encompassing NSVs and continuous emotions.


Contextual Speech Extraction: Leveraging Textual History as an Implicit Cue for Target Speech Extraction

arXiv.org Artificial Intelligence

In this paper, we investigate a novel approach for Target Speech Extraction (TSE), which relies solely on textual context to extract the target speech. We refer to this task as Contextual Speech Extraction (CSE). Unlike traditional TSE methods that rely on pre-recorded enrollment utterances, video of the target speaker's face, spatial information, or other explicit cues to identify the target stream, our proposed method requires only a few turns of previous dialogue (or monologue) history. This approach is naturally feasible in mobile messaging environments where voice recordings are typically preceded by textual dialogue that can be leveraged implicitly. We present three CSE models and analyze their performances on three datasets. Through our experiments, we demonstrate that even when the model relies purely on dialogue history, it can achieve over 90 % accuracy in identifying the correct target stream with only two previous dialogue turns. Furthermore, we show that by leveraging both textual context and enrollment utterances as cues during training, we further enhance our model's flexibility and effectiveness, allowing us to use either cue during inference, or combine both for improved performance. Samples and code available on https://miraodasilva.github.io/cse-project-page .


Full-Rank No More: Low-Rank Weight Training for Modern Speech Recognition Models

arXiv.org Artificial Intelligence

This paper investigates the under-explored area of low-rank weight training for large-scale Conformer-based speech recognition models from scratch. Our study demonstrates the viability of this training paradigm for such models, yielding several notable findings. Firstly, we discover that applying a low-rank structure exclusively to the attention modules can unexpectedly enhance performance, even with a significant rank reduction of 12%. In contrast, feed-forward layers present greater challenges, as they begin to exhibit performance degradation with a moderate 50% rank reduction. Furthermore, we find that both initialization and layer-wise rank assignment play critical roles in successful low-rank training. Specifically, employing SVD initialization and linear layer-wise rank mapping significantly boosts the efficacy of low-rank weight training. Building on these insights, we introduce the Low-Rank Speech Model from Scratch (LR-SMS), an approach that achieves performance parity with full-rank training while delivering substantial reductions in parameters count (by at least 2x), and training time speedups (by 1.3x for ASR and 1.15x for AVSR).


Medical records condensation: a roadmap towards healthcare data democratisation

arXiv.org Artificial Intelligence

The prevalence of artificial intelligence (AI) has envisioned an era of healthcare democratisation that promises every stakeholder a new and better way of life. However, the advancement of clinical AI research is significantly hurdled by the dearth of data democratisation in healthcare. To truly democratise data for AI studies, challenges are two-fold: 1. the sensitive information in clinical data should be anonymised appropriately, and 2. AI-oriented clinical knowledge should flow freely across organisations. This paper considers a recent deep-learning advent, dataset condensation (DC), as a stone that kills two birds in democratising healthcare data. The condensed data after DC, which can be viewed as statistical metadata, abstracts original clinical records and irreversibly conceals sensitive information at individual levels; nevertheless, it still preserves adequate knowledge for learning deep neural networks (DNNs). More favourably, the compressed volumes and the accelerated model learnings of condensed data portray a more efficient clinical knowledge sharing and flowing system, as necessitated by data democratisation. We underline DC's prospects for democratising clinical data, specifically electrical healthcare records (EHRs), for AI research through experimental results and analysis across three healthcare datasets of varying data types.


Laughing Matters: Introducing Laughing-Face Generation using Diffusion Models

arXiv.org Artificial Intelligence

Speech-driven animation has gained significant traction in recent years, with current methods achieving near-photorealistic results. However, the field remains underexplored regarding non-verbal communication despite evidence demonstrating its importance in human interaction. In particular, generating laughter sequences presents a unique challenge due to the intricacy and nuances of this behaviour. This paper aims to bridge this gap by proposing a novel model capable of generating realistic laughter sequences, given a still portrait and an audio clip containing laughter. We highlight the failure cases of traditional facial animation methods and leverage recent advances in diffusion models to produce convincing laughter videos. We train our model on a diverse set of laughter datasets and introduce an evaluation metric specifically designed for laughter. When compared with previous speech-driven approaches, our model achieves state-of-the-art performance across all metrics, even when these are re-trained for laughter generation. Our code and project are publicly available


Jointly Learning Visual and Auditory Speech Representations from Raw Data

arXiv.org Artificial Intelligence

We present RAVEn, a self-supervised multi-modal approach to jointly learn visual and auditory speech representations. Our pre-training objective involves encoding masked inputs, and then predicting contextualised targets generated by slowly-evolving momentum encoders. Driven by the inherent differences between video and audio, our design is asymmetric w.r.t. the two modalities' pretext tasks: Whereas the auditory stream predicts both the visual and auditory targets, the visual one predicts only the auditory targets. We observe strong results in low-and high-resource labelled data settings when fine-tuning the visual and auditory encoders resulting from a single pre-training stage, in which the encoders are jointly trained. Notably, RAVEn surpasses all self-supervised methods on visual speech recognition (VSR) on LRS3, and combining RAVEn with self-training using only 30 hours of labelled data even outperforms a recent semi-supervised method trained on 90,000 hours of non-public data. At the same time, we achieve state-of-the-art results in the LRS3 low-resource setting for auditory speech recognition (as well as for VSR). Our findings point to the viability of learning powerful speech representations entirely from raw video and audio, i.e., without relying on handcrafted features. The sound of someone articulating words coincides with the sight of movements in and around their mouth. Both a recording of a speech waveform and a corresponding silent video of mouth motion provide rich - but not identical - information on which words were uttered. Despite the difficulty of interpreting lip movements compared with an audio waveform, the task of visual speech recognition (VSR; also known as lipreading) has important applications, ranging from recognising utterances in a noisy environment (Ma et al., 2021b; Afouras et al., 2018a; Martinez et al., 2020; Makino et al., 2019) and aiding people suffering from aphonia (an inability to speak), to transcribing archival silent films and detecting DeepFake videos (Haliassos et al., 2021). Auditory (also known as automatic) speech recognition (ASR) and VSR benefit greatly from the combination of high-capacity neural networks and large datasets. Rapid advances of modern hardware are enabling the use of ever-growing, data-hungry networks, but the effort required for transcription hinders the scaling of labelled data along with the models. One way to leverage unlabelled videos for VSR is to use an external ASR model for pseudo-labelling (Afouras et al., 2020; Ma et al., 2022). However, this requires a large amount of labelled data to train a strong ASR model in the first place, and supervised VSR training with long sequences often poses optimisation problems, requiring costly curriculum learning strategies (Chung et al., 2017; Ma et al., 2022) or pre-training the feature extractor with isolated words (Afouras et al., 2018a; Ma et al., 2021b).


SynthVSR: Scaling Up Visual Speech Recognition With Synthetic Supervision

arXiv.org Artificial Intelligence

Recently reported state-of-the-art results in visual speech recognition (VSR) often rely on increasingly large amounts of video data, while the publicly available transcribed video datasets are limited in size. In this paper, for the first time, we study the potential of leveraging synthetic visual data for VSR. Our method, termed SynthVSR, substantially improves the performance of VSR systems with synthetic lip movements. The key idea behind SynthVSR is to leverage a speech-driven lip animation model that generates lip movements conditioned on the input speech. The speech-driven lip animation model is trained on an unlabeled audio-visual dataset and could be further optimized towards a pre-trained VSR model when labeled videos are available. As plenty of transcribed acoustic data and face images are available, we are able to generate large-scale synthetic data using the proposed lip animation model for semi-supervised VSR training. We evaluate the performance of our approach on the largest public VSR benchmark - Lip Reading Sentences 3 (LRS3). SynthVSR achieves a WER of 43.3% with only 30 hours of real labeled data, outperforming off-the-shelf approaches using thousands of hours of video. The WER is further reduced to 27.9% when using all 438 hours of labeled data from LRS3, which is on par with the state-of-the-art self-supervised AV-HuBERT method. Furthermore, when combined with large-scale pseudo-labeled audio-visual data SynthVSR yields a new state-of-the-art VSR WER of 16.9% using publicly available data only, surpassing the recent state-of-the-art approaches trained with 29 times more non-public machine-transcribed video data (90,000 hours). Finally, we perform extensive ablation studies to understand the effect of each component in our proposed method.


Learning Cross-lingual Visual Speech Representations

arXiv.org Artificial Intelligence

Cross-lingual self-supervised learning has been a growing research topic in the last few years. However, current works only explored the use of audio signals to create representations. In this work, we study cross-lingual self-supervised visual representation learning. We use the recently-proposed Raw Audio-Visual Speech Encoders (RAVEn) framework to pre-train an audio-visual model with unlabelled multilingual data, and then fine-tune the visual model on labelled transcriptions. Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance; (2) multi-lingual outperforms English-only pre-training; (3) using languages which are more similar yields better results; and (4) fine-tuning on unseen languages is competitive to using the target language in the pre-training set. We hope our study inspires future research on non-English-only speech representation learning.


LA-VocE: Low-SNR Audio-visual Speech Enhancement using Neural Vocoders

arXiv.org Artificial Intelligence

Audio-visual speech enhancement aims to extract clean speech from a noisy environment by leveraging not only the audio itself but also the target speaker's lip movements. This approach has been shown to yield improvements over audio-only speech enhancement, particularly for the removal of interfering speech. Despite recent advances in speech synthesis, most audio-visual approaches continue to use spectral mapping/masking to reproduce the clean audio, often resulting in visual backbones added to existing speech enhancement architectures. In this work, we propose LA-VocE, a new two-stage approach that predicts mel-spectrograms from noisy audio-visual speech via a transformer-based architecture, and then converts them into waveform audio using a neural vocoder (HiFi-GAN). We train and evaluate our framework on thousands of speakers and 11+ different languages, and study our model's ability to adapt to different levels of background noise and speech interference. Our experiments show that LA-VocE outperforms existing methods according to multiple metrics, particularly under very noisy scenarios.


Training Strategies for Improved Lip-reading

arXiv.org Artificial Intelligence

Several training strategies and temporal models have been recently proposed for isolated word lip-reading in a series of independent works. However, the potential of combining the best strategies and investigating the impact of each of them has not been explored. In this paper, we systematically investigate the performance of state-of-the-art data augmentation approaches, temporal models and other training strategies, like self-distillation and using word boundary indicators. Our results show that Time Masking (TM) is the most important augmentation followed by mixup and Densely-Connected Temporal Convolutional Networks (DC-TCN) are the best temporal model for lip-reading of isolated words. Using self-distillation and word boundary indicators is also beneficial but to a lesser extent. A combination of all the above methods results in a classification accuracy of 93.4%, which is an absolute improvement of 4.6% over the current state-of-the-art performance on the LRW dataset. The performance can be further improved to 94.1% by pre-training on additional datasets. An error analysis of the various training strategies reveals that the performance improves by increasing the classification accuracy of hard-to-recognise words.