Goto

Collaborating Authors

 Peng, Sida


Human-Centric Foundation Models: Perception, Generation and Agentic Modeling

arXiv.org Artificial Intelligence

In this survey, we present community appeals for a unified framework [Ci et al., 2023; a comprehensive overview of HcFMs by proposing Wang et al., 2023; Chen et al., 2024; Huang et al., 2024a] to a taxonomy that categorizes current approaches unlock systematic understanding and a wide range of humancentric into four groups: (1) Human-centric Perception applications for everybody. Foundation Models that capture fine-grained features Inspired by rapid advancements of general foundation models, for multi-modal 2D and 3D understanding; (2) e.g., large language models (LLMs), large vision models Human-centric AIGC Foundation Models that generate (LVMs) and text-to-image generative models, and their high-fidelity, diverse human-related content; presents of a paradigm shift from end-to-end learning of (3) Unified Perception and Generation Models that task-specific models to generalist models, a recent trend is integrate these capabilities to enhance both human to develop Human-centric Foundation Models (HcFM) that understanding and synthesis; and (4) Human-centric satisfy three criteria, namely generalization, broad applicability, Agentic Foundation Models that extend beyond perception and high fidelity. Generalization ensures robustness and generation to learn human-like intelligence to unseen conditions, enabling the model to perform consistently and interactive behaviors for humanoid embodied across varied environments.


Acquisition through My Eyes and Steps: A Joint Predictive Agent Model in Egocentric Worlds

arXiv.org Artificial Intelligence

This paper addresses the task of learning an agent model behaving like humans, which can jointly perceive, predict, and act in egocentric worlds. Previous methods usually train separate models for these three abilities, leading to information silos among them, which prevents these abilities from learning from each other and collaborating effectively. In this paper, we propose a joint predictive agent model, named EgoAgent, that simultaneously learns to represent the world, predict future states, and take reasonable actions with a single transformer. EgoAgent unifies the representational spaces of the three abilities by mapping them all into a sequence of continuous tokens. Learnable query tokens are appended to obtain current states, future states, and next actions. With joint supervision, our agent model establishes the internal relationship among these three abilities and effectively mimics the human inference and learning processes. Comprehensive evaluations of EgoAgent covering image classification, egocentric future state prediction, and 3D human motion prediction tasks demonstrate the superiority of our method. The code and trained model will be released for reproducibility.


LiDAR-RT: Gaussian-based Ray Tracing for Dynamic LiDAR Re-simulation

arXiv.org Artificial Intelligence

This paper targets the challenge of real-time LiDAR re-simulation in dynamic driving scenarios. Recent approaches utilize neural radiance fields combined with the physical modeling of LiDAR sensors to achieve high-fidelity re-simulation results. Unfortunately, these methods face limitations due to high computational demands in large-scale scenes and cannot perform real-time LiDAR rendering. To overcome these constraints, we propose LiDAR-RT, a novel framework that supports real-time, physically accurate LiDAR re-simulation for driving scenes. Our primary contribution is the development of an efficient and effective rendering pipeline, which integrates Gaussian primitives and hardware-accelerated ray tracing technology. Specifically, we model the physical properties of LiDAR sensors using Gaussian primitives with learnable parameters and incorporate scene graphs to handle scene dynamics. Building upon this scene representation, our framework first constructs a bounding volume hierarchy (BVH), then casts rays for each pixel and generates novel LiDAR views through a differentiable rendering algorithm. Importantly, our framework supports realistic rendering with flexible scene editing operations and various sensor configurations. Extensive experiments across multiple public benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of rendering quality and efficiency. Our project page is at https://zju3dv.github.io/lidar-rt.


Improving Performance of Commercially Available AI Products in a Multi-Agent Configuration

arXiv.org Artificial Intelligence

In recent years, with the rapid advancement of large language models (LLMs), multi-agent systems have become increasingly more capable of practical application. At the same time, the software development industry has had a number of new AI-powered tools developed that improve the software development lifecycle (SDLC). Academically, much attention has been paid to the role of multi-agent systems to the SDLC. And, while single-agent systems have frequently been examined in real-world applications, we have seen comparatively few real-world examples of publicly available commercial tools working together in a multi-agent system with measurable improvements. In this experiment we test context sharing between Crowdbotics PRD AI, a tool for generating software requirements using AI, and GitHub Copilot, an AI pair-programming tool. By sharing business requirements from PRD AI, we improve the code suggestion capabilities of GitHub Copilot by 13.8% and developer task success rate by 24.5% -- demonstrating a real-world example of commercially-available AI systems working together with improved outcomes.


AI Revolution on Chat Bot: Evidence from a Randomized Controlled Experiment

arXiv.org Artificial Intelligence

In recent years, generative AI has undergone major advancements, demonstrating significant promise in augmenting human productivity. Notably, large language models (LLM), with ChatGPT-4 as an example, have drawn considerable attention. Numerous articles have examined the impact of LLM-based tools on human productivity in lab settings and designed tasks or in observational studies. Despite recent advances, field experiments applying LLM-based tools in realistic settings are limited. This paper presents the findings of a field randomized controlled trial assessing the effectiveness of LLM-based tools in providing unmonitored support services for information retrieval.


Relightable and Animatable Neural Avatar from Sparse-View Video

arXiv.org Artificial Intelligence

This paper tackles the challenge of creating relightable and animatable neural avatars from sparse-view (or even monocular) videos of dynamic humans under unknown illumination. Compared to studio environments, this setting is more practical and accessible but poses an extremely challenging ill-posed problem. Previous neural human reconstruction methods are able to reconstruct animatable avatars from sparse views using deformed Signed Distance Fields (SDF) but cannot recover material parameters for relighting. While differentiable inverse rendering-based methods have succeeded in material recovery of static objects, it is not straightforward to extend them to dynamic humans as it is computationally intensive to compute pixel-surface intersection and light visibility on deformed SDFs for inverse rendering. To solve this challenge, we propose a Hierarchical Distance Query (HDQ) algorithm to approximate the world space distances under arbitrary human poses. Specifically, we estimate coarse distances based on a parametric human model and compute fine distances by exploiting the local deformation invariance of SDF. Based on the HDQ algorithm, we leverage sphere tracing to efficiently estimate the surface intersection and light visibility. This allows us to develop the first system to recover animatable and relightable neural avatars from sparse view (or monocular) inputs. Experiments demonstrate that our approach is able to produce superior results compared to state-of-the-art methods. Our code will be released for reproducibility.


Learning Neural Volumetric Representations of Dynamic Humans in Minutes

arXiv.org Artificial Intelligence

This paper addresses the challenge of quickly reconstructing free-viewpoint videos of dynamic humans from sparse multi-view videos. Some recent works represent the dynamic human as a canonical neural radiance field (NeRF) and a motion field, which are learned from videos through differentiable rendering. But the per-scene optimization generally requires hours. Other generalizable NeRF models leverage learned prior from datasets and reduce the optimization time by only finetuning on new scenes at the cost of visual fidelity. In this paper, we propose a novel method for learning neural volumetric videos of dynamic humans from sparse view videos in minutes with competitive visual quality. Specifically, we define a novel part-based voxelized human representation to better distribute the representational power of the network to different human parts. Furthermore, we propose a novel 2D motion parameterization scheme to increase the convergence rate of deformation field learning. Experiments demonstrate that our model can be learned 100 times faster than prior per-scene optimization methods while being competitive in the rendering quality. Training our model on a $512 \times 512$ video with 100 frames typically takes about 5 minutes on a single RTX 3090 GPU. The code will be released on our project page: https://zju3dv.github.io/instant_nvr


Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data

arXiv.org Machine Learning

This paper proposes a doubly robust two-stage semiparametric difference-in-difference estimator for estimating heterogeneous treatment effects with high-dimensional data. Our new estimator is robust to model miss-specifications and allows for, but does not require, many more regressors than observations. The first stage allows a general set of machine learning methods to be used to estimate the propensity score. In the second stage, we derive the rates of convergence for both the parametric parameter and the unknown function under a partially linear specification for the outcome equation. We also provide bias correction procedures to allow for valid inference for the heterogeneous treatment effects. We evaluate the finite sample performance with extensive simulation studies. Additionally, a real data analysis on the effect of Fair Minimum Wage Act on the unemployment rate is performed as an illustration of our method. An R package for implementing the proposed method is available on Github.


Robust Estimation of Causal Effects via High-Dimensional Covariate Balancing Propensity Score

arXiv.org Machine Learning

In this paper, we propose a robust method to estimate the average treatment effects in observational studies when the number of potential confounders is possibly much greater than the sample size. We first use a class of penalized M-estimators for the propensity score and outcome models. We then calibrate the initial estimate of the propensity score by balancing a carefully selected subset of covariates that are predictive of the outcome. Finally, the estimated propensity score is used to construct the inverse probability weighting estimator. We prove that the proposed estimator, which has the sample boundedness property, is root-n consistent, asymptotically normal, and semiparametrically efficient when the propensity score model is correctly specified and the outcome model is linear in covariates. More importantly, we show that our estimator remains root-n consistent and asymptotically normal so long as either the propensity score model or the outcome model is correctly specified. We provide valid confidence intervals in both cases and further extend these results to the case where the outcome model is a generalized linear model. In simulation studies, we find that the proposed methodology often estimates the average treatment effect more accurately than the existing methods. We also present an empirical application, in which we estimate the average causal effect of college attendance on adulthood political participation. Open-source software is available for implementing the proposed methodology.