Peng, Fuchun
Model-Based Approach for Measuring the Fairness in ASR
Liu, Zhe, Veliche, Irina-Elena, Peng, Fuchun
The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any fairness measurement studies for ASR, the open questions of how to control the nuisance factors, how to handle unobserved heterogeneity across speakers, and how to trace the source of any word error rate (WER) gap among different subgroups are especially important - if not appropriately accounted for, incorrect conclusions will be drawn. In this paper, we introduce mixed-effects Poisson regression to better measure and interpret any WER difference among subgroups of interest. Particularly, the presented method can effectively address the three problems raised above and is very flexible to use in practical disparity analyses. We demonstrate the validity of proposed model-based approach on both synthetic and real-world speech data.
Federated Marginal Personalization for ASR Rescoring
Liu, Zhe, Peng, Fuchun
We introduce federated marginal personalization (FMP), a novel method for continuously updating personalized neural network language models (NNLMs) on private devices using federated learning (FL). Instead of fine-tuning the parameters of NNLMs on personal data, FMP regularly estimates global and personalized marginal distributions of words, and adjusts the probabilities from NNLMs by an adaptation factor that is specific to each word. Our presented approach can overcome the limitations of federated fine-tuning and efficiently learn personalized NNLMs on devices. We study the application of FMP on second-pass ASR rescoring tasks. Experiments on two speech evaluation datasets show modest word error rate (WER) reductions. We also demonstrate that FMP could offer reasonable privacy with only a negligible cost in speech recognition accuracy.
Mix-review: Alleviate Forgetting in the Pretrain-Finetune Framework for Neural Language Generation Models
He, Tianxing, Liu, Jun, Cho, Kyunghyun, Ott, Myle, Liu, Bing, Glass, James, Peng, Fuchun
In this work, we study how the large-scale pretrain-finetune framework changes the behavior of a neural language generator. We focus on the transformer encoder-decoder model for the open-domain dialogue response generation task. We find that after standard fine-tuning, the model forgets important language generation skills acquired during large-scale pre-training. We demonstrate the forgetting phenomenon through a detailed behavior analysis from the perspectives of context sensitivity and knowledge transfer. Adopting the concept of data mixing, we propose an intuitive fine-tuning strategy named "mix-review". We find that mix-review effectively regularize the fine-tuning process, and the forgetting problem is largely alleviated. Finally, we discuss interesting behavior of the resulting dialogue model and its implications.
Boltzmann Machine Learning with the Latent Maximum Entropy Principle
Wang, Shaojun, Schuurmans, Dale, Peng, Fuchun, Zhao, Yunxin
We present a new statistical learning paradigm for Boltzmann machines based on a new inference principle we have proposed: the latent maximum entropy principle (LME). LME is different both from Jaynes maximum entropy principle and from standard maximum likelihood estimation.We demonstrate the LME principle BY deriving new algorithms for Boltzmann machine parameter estimation, and show how robust and fast new variant of the EM algorithm can be developed.Our experiments show that estimation based on LME generally yields better results than maximum likelihood estimation, particularly when inferring hidden units from small amounts of data.
An Integrated, Conditional Model of Information Extraction and Coreference with Applications to Citation Matching
Wellner, Ben, McCallum, Andrew, Peng, Fuchun, Hay, Michael
Although information extraction and coreference resolution appear together in many applications, most current systems perform them as ndependent steps. This paper describes an approach to integrated inference for extraction and coreference based on conditionally-trained undirected graphical models. We discuss the advantages of conditional probability training, and of a coreference model structure based on graph partitioning. On a data set of research paper citations, we show significant reduction in error by using extraction uncertainty to improve coreference citation matching accuracy, and using coreference to improve the accuracy of the extracted fields.