Goto

Collaborating Authors

 Pei, Liuao


Collaborative Planning for Catching and Transporting Objects in Unstructured Environments

arXiv.org Artificial Intelligence

Multi-robot teams have attracted attention from industry and academia for their ability to perform collaborative tasks in unstructured environments, such as wilderness rescue and collaborative transportation.In this paper, we propose a trajectory planning method for a non-holonomic robotic team with collaboration in unstructured environments.For the adaptive state collaboration of a robot team to catch and transport targets to be rescued using a net, we model the process of catching the falling target with a net in a continuous and differentiable form.This enables the robot team to fully exploit the kinematic potential, thereby adaptively catching the target in an appropriate state.Furthermore, the size safety and topological safety of the net, resulting from the collaborative support of the robots, are guaranteed through geometric constraints.We integrate our algorithm on a car-like robot team and test it in simulations and real-world experiments to validate our performance.Our method is compared to state-of-the-art multi-vehicle trajectory planning methods, demonstrating significant performance in efficiency and trajectory quality.


An Efficient Spatial-Temporal Trajectory Planner for Autonomous Vehicles in Unstructured Environments

arXiv.org Artificial Intelligence

As a core part of autonomous driving systems, motion planning has received extensive attention from academia and industry. However, real-time trajectory planning capable of spatial-temporal joint optimization is challenged by nonholonomic dynamics, particularly in the presence of unstructured environments and dynamic obstacles. To bridge the gap, we propose a real-time trajectory optimization method that can generate a high-quality whole-body trajectory under arbitrary environmental constraints. By leveraging the differential flatness property of car-like robots, we simplify the trajectory representation and analytically formulate the planning problem while maintaining the feasibility of the nonholonomic dynamics. Moreover, we achieve efficient obstacle avoidance with a safe driving corridor for unmodelled obstacles and signed distance approximations for dynamic moving objects. We present comprehensive benchmarks with State-of-the-Art methods, demonstrating the significance of the proposed method in terms of efficiency and trajectory quality. Real-world experiments verify the practicality of our algorithm. We will release our codes for the research community


A Linear and Exact Algorithm for Whole-Body Collision Evaluation via Scale Optimization

arXiv.org Artificial Intelligence

Collision evaluation is of vital importance in various applications. However, existing methods are either cumbersome to calculate or have a gap with the actual value. In this paper, we propose a zero-gap whole-body collision evaluation which can be formulated as a low dimensional linear program. This evaluation can be solved analytically in O(m) computational time, where m is the total number of the linear inequalities in this linear program. Moreover, the proposed method is efficient in obtaining its gradient, making it easy to apply to optimization-based applications.