Pavlova, Maya
AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents
Zharmagambetov, Arman, Guo, Chuan, Evtimov, Ivan, Pavlova, Maya, Salakhutdinov, Ruslan, Chaudhuri, Kamalika
LLM-powered AI agents are an emerging frontier with tremendous potential to increase human productivity. However, empowering AI agents to take action on their user's behalf in day-to-day tasks involves giving them access to potentially sensitive and private information, which leads to a possible risk of inadvertent privacy leakage when the agent malfunctions. In this work, we propose one way to address that potential risk, by training AI agents to better satisfy the privacy principle of data minimization. For the purposes of this benchmark, by "data minimization" we mean instances where private information is shared only when it is necessary to fulfill a specific task-relevant purpose. We develop a benchmark called AgentDAM to evaluate how well existing and future AI agents can limit processing of potentially private information that we designate "necessary" to fulfill the task. Our benchmark simulates realistic web interaction scenarios and is adaptable to all existing web navigation agents. We use AgentDAM to evaluate how well AI agents built on top of GPT-4, Llama-3 and Claude can limit processing of potentially private information when unnecessary, and show that these agents are often prone to inadvertent use of unnecessary sensitive information. We finally propose a prompting-based approach that reduces this.
Automated Red Teaming with GOAT: the Generative Offensive Agent Tester
Pavlova, Maya, Brinkman, Erik, Iyer, Krithika, Albiero, Vitor, Bitton, Joanna, Nguyen, Hailey, Li, Joe, Ferrer, Cristian Canton, Evtimov, Ivan, Grattafiori, Aaron
Red teaming assesses how large language models (LLMs) can produce content that violates norms, policies, and rules set during their safety training. However, most existing automated methods in the literature are not representative of the way humans tend to interact with AI models. Common users of AI models may not have advanced knowledge of adversarial machine learning methods or access to model internals, and they do not spend a lot of time crafting a single highly effective adversarial prompt. Instead, they are likely to make use of techniques commonly shared online and exploit the multiturn conversational nature of LLMs. While manual testing addresses this gap, it is an inefficient and often expensive process. To address these limitations, we introduce the Generative Offensive Agent Tester (GOAT), an automated agentic red teaming system that simulates plain language adversarial conversations while leveraging multiple adversarial prompting techniques to identify vulnerabilities in LLMs. We instantiate GOAT with 7 red teaming attacks by prompting a general-purpose model in a way that encourages reasoning through the choices of methods available, the current target model's response, and the next steps. Our approach is designed to be extensible and efficient, allowing human testers to focus on exploring new areas of risk while automation covers the scaled adversarial stress-testing of known risk territory. We present the design and evaluation of GOAT, demonstrating its effectiveness in identifying vulnerabilities in state-of-the-art LLMs, with an ASR@10 of 97% against Llama 3.1 and 88% against GPT-4 on the JailbreakBench dataset.
COVID-Net Biochem: An Explainability-driven Framework to Building Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19 Patients from Clinical and Biochemistry Data
Aboutalebi, Hossein, Pavlova, Maya, Shafiee, Mohammad Javad, Florea, Adrian, Hryniowski, Andrew, Wong, Alexander
Since the World Health Organization declared COVID-19 a pandemic in 2020, the global community has faced ongoing challenges in controlling and mitigating the transmission of the SARS-CoV-2 virus, as well as its evolving subvariants and recombinants. A significant challenge during the pandemic has not only been the accurate detection of positive cases but also the efficient prediction of risks associated with complications and patient survival probabilities. These tasks entail considerable clinical resource allocation and attention.In this study, we introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models. We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization, utilizing clinical and biochemical data in a transparent, systematic approach. The proposed approach advances machine learning model design by seamlessly integrating domain expertise with explainability tools, enabling model decisions to be based on key biomarkers. This fosters a more transparent and interpretable decision-making process made by machines specifically for medical applications.