Paschali, Magdalini
Foundation Models in Radiology: What, How, When, Why and Why Not
Paschali, Magdalini, Chen, Zhihong, Blankemeier, Louis, Varma, Maya, Youssef, Alaa, Bluethgen, Christian, Langlotz, Curtis, Gatidis, Sergios, Chaudhari, Akshay
Recent advances in artificial intelligence have witnessed the emergence of large-scale deep learning models capable of interpreting and generating both textual and imaging data. Such models, typically referred to as foundation models, are trained on extensive corpora of unlabeled data and demonstrate high performance across various tasks. Foundation models have recently received extensive attention from academic, industry, and regulatory bodies. Given the potentially transformative impact that foundation models can have on the field of radiology, this review aims to establish a standardized terminology concerning foundation models, with a specific focus on the requirements of training data, model training paradigms, model capabilities, and evaluation strategies. We further outline potential pathways to facilitate the training of radiology-specific foundation models, with a critical emphasis on elucidating both the benefits and challenges associated with such models. Overall, we envision that this review can unify technical advances and clinical needs in the training of foundation models for radiology in a safe and responsible manner, for ultimately benefiting patients, providers, and radiologists.
Spectral Graph Sample Weighting for Interpretable Sub-cohort Analysis in Predictive Models for Neuroimaging
Paschali, Magdalini, Jiang, Yu Hang, Siegel, Spencer, Gonzalez, Camila, Pohl, Kilian M., Chaudhari, Akshay, Zhao, Qingyu
Recent advancements in medicine have confirmed that brain disorders often comprise multiple subtypes of mechanisms, developmental trajectories, or severity levels. Such heterogeneity is often associated with demographic aspects (e.g., sex) or disease-related contributors (e.g., genetics). Thus, the predictive power of machine learning models used for symptom prediction varies across subjects based on such factors. To model this heterogeneity, one can assign each training sample a factor-dependent weight, which modulates the subject's contribution to the overall objective loss function. To this end, we propose to model the subject weights as a linear combination of the eigenbases of a spectral population graph that captures the similarity of factors across subjects. In doing so, the learned weights smoothly vary across the graph, highlighting sub-cohorts with high and low predictability. Our proposed sample weighting scheme is evaluated on two tasks. First, we predict initiation of heavy alcohol drinking in young adulthood from imaging and neuropsychological measures from the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Next, we detect Dementia vs. Mild Cognitive Impairment (MCI) using imaging and demographic measurements in subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Compared to existing sample weighting schemes, our sample weights improve interpretability and highlight sub-cohorts with distinct characteristics and varying model accuracy.
Merlin: A Vision Language Foundation Model for 3D Computed Tomography
Blankemeier, Louis, Cohen, Joseph Paul, Kumar, Ashwin, Van Veen, Dave, Gardezi, Syed Jamal Safdar, Paschali, Magdalini, Chen, Zhihong, Delbrouck, Jean-Benoit, Reis, Eduardo, Truyts, Cesar, Bluethgen, Christian, Jensen, Malte Engmann Kjeldskov, Ostmeier, Sophie, Varma, Maya, Valanarasu, Jeya Maria Jose, Fang, Zhongnan, Huo, Zepeng, Nabulsi, Zaid, Ardila, Diego, Weng, Wei-Hung, Junior, Edson Amaro, Ahuja, Neera, Fries, Jason, Shah, Nigam H., Johnston, Andrew, Boutin, Robert D., Wentland, Andrew, Langlotz, Curtis P., Hom, Jason, Gatidis, Sergios, Chaudhari, Akshay S.
Over 85 million computed tomography (CT) scans are performed annually in the US, of which approximately one quarter focus on the abdomen. Given the current radiologist shortage, there is a large impetus to use artificial intelligence to alleviate the burden of interpreting these complex imaging studies. Prior state-of-the-art approaches for automated medical image interpretation leverage vision language models (VLMs). However, current medical VLMs are generally limited to 2D images and short reports, and do not leverage electronic health record (EHR) data for supervision. We introduce Merlin - a 3D VLM that we train using paired CT scans (6+ million images from 15,331 CTs), EHR diagnosis codes (1.8+ million codes), and radiology reports (6+ million tokens). We evaluate Merlin on 6 task types and 752 individual tasks. The non-adapted (off-the-shelf) tasks include zero-shot findings classification (31 findings), phenotype classification (692 phenotypes), and zero-shot cross-modal retrieval (image to findings and image to impressions), while model adapted tasks include 5-year disease prediction (6 diseases), radiology report generation, and 3D semantic segmentation (20 organs). We perform internal validation on a test set of 5,137 CTs, and external validation on 7,000 clinical CTs and on two public CT datasets (VerSe, TotalSegmentator). Beyond these clinically-relevant evaluations, we assess the efficacy of various network architectures and training strategies to depict that Merlin has favorable performance to existing task-specific baselines. We derive data scaling laws to empirically assess training data needs for requisite downstream task performance. Furthermore, unlike conventional VLMs that require hundreds of GPUs for training, we perform all training on a single GPU.
CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation
Chen, Zhihong, Varma, Maya, Delbrouck, Jean-Benoit, Paschali, Magdalini, Blankemeier, Louis, Van Veen, Dave, Valanarasu, Jeya Maria Jose, Youssef, Alaa, Cohen, Joseph Paul, Reis, Eduardo Pontes, Tsai, Emily B., Johnston, Andrew, Olsen, Cameron, Abraham, Tanishq Mathew, Gatidis, Sergios, Chaudhari, Akshay S., Langlotz, Curtis
Chest X-rays (CXRs) are the most frequently performed imaging test in clinical practice. Recent advances in the development of vision-language foundation models (FMs) give rise to the possibility of performing automated CXR interpretation, which can assist physicians with clinical decision-making and improve patient outcomes. However, developing FMs that can accurately interpret CXRs is challenging due to the (1) limited availability of large-scale vision-language datasets in the medical image domain, (2) lack of vision and language encoders that can capture the complexities of medical data, and (3) absence of evaluation frameworks for benchmarking the abilities of FMs on CXR interpretation. In this work, we address these challenges by first introducing \emph{CheXinstruct} - a large-scale instruction-tuning dataset curated from 28 publicly-available datasets. We then present \emph{CheXagent} - an instruction-tuned FM capable of analyzing and summarizing CXRs. To build CheXagent, we design a clinical large language model (LLM) for parsing radiology reports, a vision encoder for representing CXR images, and a network to bridge the vision and language modalities. Finally, we introduce \emph{CheXbench} - a novel benchmark designed to systematically evaluate FMs across 8 clinically-relevant CXR interpretation tasks. Extensive quantitative evaluations and qualitative reviews with five expert radiologists demonstrate that CheXagent outperforms previously-developed general- and medical-domain FMs on CheXbench tasks. Furthermore, in an effort to improve model transparency, we perform a fairness evaluation across factors of sex, race and age to highlight potential performance disparities. Our project is at \url{https://stanford-aimi.github.io/chexagent.html}.
Self-Supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET
De Benetti, Francesca, Simson, Walter, Paschali, Magdalini, Sari, Hasan, Romiger, Axel, Shi, Kuangyu, Navab, Nassir, Wendler, Thomas
Dynamic positron emission tomography imaging (dPET) provides temporally resolved images of a tracer enabling a quantitative measure of physiological processes. Voxel-wise physiologically-based pharmacokinetic (PBPK) modeling of the time activity curves (TAC) can provide relevant diagnostic information for clinical workflow. Conventional fitting strategies for TACs are slow and ignore the spatial relation between neighboring voxels. We train a spatio-temporal UNet to estimate the kinetic parameters given TAC from F-18-fluorodeoxyglucose (FDG) dPET. This work introduces a self-supervised loss formulation to enforce the similarity between the measured TAC and those generated with the learned kinetic parameters. Our method provides quantitatively comparable results at organ-level to the significantly slower conventional approaches, while generating pixel-wise parametric images which are consistent with expected physiology. To the best of our knowledge, this is the first self-supervised network that allows voxel-wise computation of kinetic parameters consistent with a non-linear kinetic model. The code will become publicly available upon acceptance.
Investigating Pulse-Echo Sound Speed Estimation in Breast Ultrasound with Deep Learning
Simson, Walter A., Paschali, Magdalini, Sideri-Lampretsa, Vasiliki, Navab, Nassir, Dahl, Jeremy J.
Ultrasound is an adjunct tool to mammography that can quickly and safely aid physicians with diagnosing breast abnormalities. Clinical ultrasound often assumes a constant sound speed to form B-mode images for diagnosis. However, the various types of breast tissue, such as glandular, fat, and lesions, differ in sound speed. These differences can degrade the image reconstruction process. Alternatively, sound speed can be a powerful tool for identifying disease. To this end, we propose a deep-learning approach for sound speed estimation from in-phase and quadrature ultrasound signals. First, we develop a large-scale simulated ultrasound dataset that generates quasi-realistic breast tissue by modeling breast gland, skin, and lesions with varying echogenicity and sound speed. We developed a fully convolutional neural network architecture trained on a simulated dataset to produce an estimated sound speed map from inputting three complex-value in-phase and quadrature ultrasound images formed from plane-wave transmissions at separate angles. Furthermore, thermal noise augmentation is used during model optimization to enhance generalizability to real ultrasound data. We evaluate the model on simulated, phantom, and in-vivo breast ultrasound data, demonstrating its ability to accurately estimate sound speeds consistent with previously reported values in the literature. Our simulated dataset and model will be publicly available to provide a step towards accurate and generalizable sound speed estimation for pulse-echo ultrasound imaging.
OperA: Attention-Regularized Transformers for Surgical Phase Recognition
Czempiel, Tobias, Paschali, Magdalini, Ostler, Daniel, Kim, Seong Tae, Busam, Benjamin, Navab, Nassir
In this paper we introduce OperA, a transformer-based model that accurately predicts surgical phases from long video sequences. A novel attention regularization loss encourages the model to focus on high-quality frames during training. Moreover, the attention weights are utilized to identify characteristic high attention frames for each surgical phase, which could further be used for surgery summarization. OperA is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos, outperforming various state-of-the-art temporal refinement approaches.
Ultrasound-Guided Robotic Navigation with Deep Reinforcement Learning
Hase, Hannes, Azampour, Mohammad Farid, Tirindelli, Maria, Paschali, Magdalini, Simson, Walter, Fatemizadeh, Emad, Navab, Nassir
In this paper we introduce the first reinforcement learning (RL) based robotic navigation method which utilizes ultrasound (US) images as an input. Our approach combines state-of-the-art RL techniques, specifically deep Q-networks (DQN) with memory buffers and a binary classifier for deciding when to terminate the task. Our method is trained and evaluated on an in-house collected data-set of 34 volunteers and when compared to pure RL and supervised learning (SL) techniques, it performs substantially better, which highlights the suitability of RL navigation for US-guided procedures. When testing our proposed model, we obtained a 82.91% chance of navigating correctly to the sacrum from 165 different starting positions on 5 different unseen simulated environments.
Signal Clustering with Class-independent Segmentation
Gasperini, Stefano, Paschali, Magdalini, Hopke, Carsten, Wittmann, David, Navab, Nassir
Radar signals have been dramatically increasing in complexity, limiting the source separation ability of traditional approaches. In this paper we propose a Deep Learning-based clustering method, which encodes concurrent signals into images, and, for the first time, tackles clustering with image segmentation. Novel loss functions are introduced to optimize a Neural Network to separate the input pulses into pure and non-fragmented clusters. Outperforming a variety of baselines, the proposed approach is capable of clustering inputs directly with a Neural Network, in an end-to-end fashion.
Data Augmentation with Manifold Exploring Geometric Transformations for Increased Performance and Robustness
Paschali, Magdalini, Simson, Walter, Roy, Abhijit Guha, Naeem, Muhammad Ferjad, Göbl, Rüdiger, Wachinger, Christian, Navab, Nassir
In this paper we propose a novel augmentation technique that improves not only the performance of deep neural networks on clean test data, but also significantly increases their robustness to random transformations, both affine and projective. Inspired by ManiFool, the augmentation is performed by a line-search manifold-exploration method that learns affine geometric transformations that lead to the misclassification on an image, while ensuring that it remains on the same manifold as the training data. This augmentation method populates any training dataset with images that lie on the border of the manifolds between two-classes and maximizes the variance the network is exposed to during training. Our method was thoroughly evaluated on the challenging tasks of fine-grained skin lesion classification from limited data, and breast tumor classification of mammograms. Compared with traditional augmentation methods, and with images synthesized by Generative Adversarial Networks our method not only achieves state-of-the-art performance but also significantly improves the network's robustness.