Not enough data to create a plot.
Try a different view from the menu above.
Pascanu, Razvan
Continual Learning: Applications and the Road Forward
Verwimp, Eli, Aljundi, Rahaf, Ben-David, Shai, Bethge, Matthias, Cossu, Andrea, Gepperth, Alexander, Hayes, Tyler L., Hüllermeier, Eyke, Kanan, Christopher, Kudithipudi, Dhireesha, Lampert, Christoph H., Mundt, Martin, Pascanu, Razvan, Popescu, Adrian, Tolias, Andreas S., van de Weijer, Joost, Liu, Bing, Lomonaco, Vincenzo, Tuytelaars, Tinne, van de Ven, Gido M.
Continual learning is a sub-field of machine learning, which aims to allow machine learning models to continuously learn on new data, by accumulating knowledge without forgetting what was learned in the past. In this work, we take a step back, and ask: "Why should one care about continual learning in the first place?". We set the stage by surveying recent continual learning papers published at three major machine learning conferences, and show that memory-constrained settings dominate the field. Then, we discuss five open problems in machine learning, and even though they seem unrelated to continual learning at first sight, we show that continual learning will inevitably be part of their solution. These problems are model-editing, personalization, on-device learning, faster (re-)training and reinforcement learning. Finally, by comparing the desiderata from these unsolved problems and the current assumptions in continual learning, we highlight and discuss four future directions for continual learning research. We hope that this work offers an interesting perspective on the future of continual learning, while displaying its potential value and the paths we have to pursue in order to make it successful. This work is the result of the many discussions the authors had at the Dagstuhl seminar on Deep Continual Learning, in March 2023.
The Tunnel Effect: Building Data Representations in Deep Neural Networks
Masarczyk, Wojciech, Ostaszewski, Mateusz, Imani, Ehsan, Pascanu, Razvan, Miłoś, Piotr, Trzciński, Tomasz
Deep neural networks are widely known for their remarkable effectiveness across various tasks, with the consensus that deeper networks implicitly learn more complex data representations. This paper shows that sufficiently deep networks trained for supervised image classification split into two distinct parts that contribute to the resulting data representations differently. The initial layers create linearly-separable representations, while the subsequent layers, which we refer to as \textit{the tunnel}, compress these representations and have a minimal impact on the overall performance. We explore the tunnel's behavior through comprehensive empirical studies, highlighting that it emerges early in the training process. Its depth depends on the relation between the network's capacity and task complexity. Furthermore, we show that the tunnel degrades out-of-distribution generalization and discuss its implications for continual learning.
Learning to Modulate pre-trained Models in RL
Schmied, Thomas, Hofmarcher, Markus, Paischer, Fabian, Pascanu, Razvan, Hochreiter, Sepp
Reinforcement Learning (RL) has been successful in various domains like robotics, game playing, and simulation. While RL agents have shown impressive capabilities in their specific tasks, they insufficiently adapt to new tasks. In supervised learning, this adaptation problem is addressed by large-scale pre-training followed by fine-tuning to new down-stream tasks. Recently, pre-training on multiple tasks has been gaining traction in RL. However, fine-tuning a pre-trained model often suffers from catastrophic forgetting. That is, the performance on the pre-training tasks deteriorates when fine-tuning on new tasks. To investigate the catastrophic forgetting phenomenon, we first jointly pre-train a model on datasets from two benchmark suites, namely Meta-World and DMControl. Then, we evaluate and compare a variety of fine-tuning methods prevalent in natural language processing, both in terms of performance on new tasks, and how well performance on pre-training tasks is retained. Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly. Therefore, we propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model via a learnable modulation pool. Our method achieves state-of-the-art performance on the Continual-World benchmark, while retaining performance on the pre-training tasks. Finally, to aid future research in this area, we release a dataset encompassing 50 Meta-World and 16 DMControl tasks.
A study on the plasticity of neural networks
Berariu, Tudor, Czarnecki, Wojciech, De, Soham, Bornschein, Jorg, Smith, Samuel, Pascanu, Razvan, Clopath, Claudia
For example, PackNet (Mallya & Lazebnik, 2017) eventually One aim shared by multiple settings, such as continual gets to a point where all neurons are frozen and learning is learning or transfer learning, is to leverage not possible anymore. In the same fashion, accumulating previously acquired knowledge to converge faster constraints in EWC (Kirkpatrick et al., 2017) might lead on the current task. Usually this is done through to a strongly regularised objective that does not allow for fine-tuning, where an implicit assumption is that the new task's loss to be minimised. Alternatively, learning the network maintains its plasticity, meaning that might become less data efficient, referred to as negative the performance it can reach on any given task is forward transfer, an effect often noticed for regularisation not affected negatively by previously seen tasks.
Deep Reinforcement Learning with Plasticity Injection
Nikishin, Evgenii, Oh, Junhyuk, Ostrovski, Georg, Lyle, Clare, Pascanu, Razvan, Dabney, Will, Barreto, André
A growing body of evidence suggests that neural networks employed in deep reinforcement learning (RL) gradually lose their plasticity, the ability to learn from new data; however, the analysis and mitigation of this phenomenon is hampered by the complex relationship between plasticity, exploration, and performance in RL. This paper introduces plasticity injection, a minimalistic intervention that increases the network plasticity without changing the number of trainable parameters or biasing the predictions. The applications of this intervention are two-fold: first, as a diagnostic tool $\unicode{x2014}$ if injection increases the performance, we may conclude that an agent's network was losing its plasticity. This tool allows us to identify a subset of Atari environments where the lack of plasticity causes performance plateaus, motivating future studies on understanding and combating plasticity loss. Second, plasticity injection can be used to improve the computational efficiency of RL training if the agent has to re-learn from scratch due to exhausted plasticity or by growing the agent's network dynamically without compromising performance. The results on Atari show that plasticity injection attains stronger performance compared to alternative methods while being computationally efficient.
Uncovering mesa-optimization algorithms in Transformers
von Oswald, Johannes, Niklasson, Eyvind, Schlegel, Maximilian, Kobayashi, Seijin, Zucchet, Nicolas, Scherrer, Nino, Miller, Nolan, Sandler, Mark, Arcas, Blaise Agüera y, Vladymyrov, Max, Pascanu, Razvan, Sacramento, João
Transformers have become the dominant model in deep learning, but the reason for their superior performance is poorly understood. Here, we hypothesize that the strong performance of Transformers stems from an architectural bias towards mesa-optimization, a learned process running within the forward pass of a model consisting of the following two steps: (i) the construction of an internal learning objective, and (ii) its corresponding solution found through optimization. To test this hypothesis, we reverse-engineer a series of autoregressive Transformers trained on simple sequence modeling tasks, uncovering underlying gradient-based mesa-optimization algorithms driving the generation of predictions. Moreover, we show that the learned forward-pass optimization algorithm can be immediately repurposed to solve supervised few-shot tasks, suggesting that mesa-optimization might underlie the in-context learning capabilities of large language models. Finally, we propose a novel self-attention layer, the mesa-layer, that explicitly and efficiently solves optimization problems specified in context. We find that this layer can lead to improved performance in synthetic and preliminary language modeling experiments, adding weight to our hypothesis that mesa-optimization is an important operation hidden within the weights of trained Transformers.
On the Universality of Linear Recurrences Followed by Nonlinear Projections
Orvieto, Antonio, De, Soham, Gulcehre, Caglar, Pascanu, Razvan, Smith, Samuel L.
In this note (work in progress towards a full-length paper) we show that a family of sequence models based on recurrent linear layers~(including S4, S5, and the LRU) interleaved with position-wise multi-layer perceptrons~(MLPs) can approximate arbitrarily well any sufficiently regular non-linear sequence-to-sequence map. The main idea behind our result is to see recurrent layers as compression algorithms that can faithfully store information about the input sequence into an inner state, before it is processed by the highly expressive MLP.
Promoting Exploration in Memory-Augmented Adam using Critical Momenta
Malviya, Pranshu, Mordido, Gonçalo, Baratin, Aristide, Harikandeh, Reza Babanezhad, Huang, Jerry, Lacoste-Julien, Simon, Pascanu, Razvan, Chandar, Sarath
Adaptive gradient-based optimizers, particularly Adam, have left their mark in training large-scale deep learning models. The strength of such optimizers is that they exhibit fast convergence while being more robust to hyperparameter choice. However, they often generalize worse than non-adaptive methods. Recent studies have tied this performance gap to flat minima selection: adaptive methods tend to find solutions in sharper basins of the loss landscape, which in turn hurts generalization. To overcome this issue, we propose a new memory-augmented version of Adam that promotes exploration towards flatter minima by using a buffer of critical momentum terms during training. Intuitively, the use of the buffer makes the optimizer overshoot outside the basin of attraction if it is not wide enough. We empirically show that our method improves the performance of several variants of Adam on standard supervised language modelling and image classification tasks.
Latent Space Representations of Neural Algorithmic Reasoners
Mirjanić, Vladimir V., Pascanu, Razvan, Veličković, Petar
Neural Algorithmic Reasoning (NAR) is a research area focused on designing neural architectures that can reliably capture classical computation, usually by learning to execute algorithms. A typical approach is to rely on Graph Neural Network (GNN) architectures, which encode inputs in high-dimensional latent spaces that are repeatedly transformed during the execution of the algorithm. In this work we perform a detailed analysis of the structure of the latent space induced by the GNN when executing algorithms. We identify two possible failure modes: (i) loss of resolution, making it hard to distinguish similar values; (ii) inability to deal with values outside the range observed during training. We propose to solve the first issue by relying on a softmax aggregator, and propose to decay the latent space in order to deal with out-of-range values. We show that these changes lead to improvements on the majority of algorithms in the standard CLRS-30 benchmark when using the state-of-the-art Triplet-GMPNN processor. Our code is available at \href{https://github.com/mirjanic/nar-latent-spaces}{https://github.com/mirjanic/nar-latent-spaces}.
Towards Robust and Efficient Continual Language Learning
Fisch, Adam, Rannen-Triki, Amal, Pascanu, Razvan, Bornschein, Jörg, Lazaridou, Angeliki, Gribovskaya, Elena, Ranzato, Marc'Aurelio
As the application space of language models continues to evolve, a natural question to ask is how we can quickly adapt models to new tasks. We approach this classic question from a continual learning perspective, in which we aim to continue fine-tuning models trained on past tasks on new tasks, with the goal of "transferring" relevant knowledge. However, this strategy also runs the risk of doing more harm than good, i.e., negative transfer. In this paper, we construct a new benchmark of task sequences that target different possible transfer scenarios one might face, such as a sequence of tasks with high potential of positive transfer, high potential for negative transfer, no expected effect, or a mixture of each. An ideal learner should be able to maximally exploit information from all tasks that have any potential for positive transfer, while also avoiding the negative effects of any distracting tasks that may confuse it. We then propose a simple, yet effective, learner that satisfies many of our desiderata simply by leveraging a selective strategy for initializing new models from past task checkpoints. Still, limitations remain, and we hope this benchmark can help the community to further build and analyze such learners.