Goto

Collaborating Authors

 Park, Young-Jin


Identifying Reliable Predictions in Detection Transformers

arXiv.org Artificial Intelligence

DEtection TRansformer (DETR) has emerged as a promising architecture for object detection, offering an end-to-end prediction pipeline. In practice, however, DETR generates hundreds of predictions that far outnumber the actual number of objects present in an image. This raises the question: can we trust and use all of these predictions? Addressing this concern, we present empirical evidence highlighting how different predictions within the same image play distinct roles, resulting in varying reliability levels across those predictions. More specifically, while multiple predictions are often made for a single object, our findings show that most often one such prediction is well-calibrated, and the others are poorly calibrated. Based on these insights, we demonstrate identifying a reliable subset of DETR's predictions is crucial for accurately assessing the reliability of the model at both object and image levels. Building on this viewpoint, we first tackle the shortcomings of widely used performance and calibration metrics, such as average precision and various forms of expected calibration error. Specifically, they are inadequate for determining which subset of DETR's predictions should be trusted and utilized. In response, we present Object-level Calibration Error (OCE), which is capable of assessing the calibration quality both across different models and among various configurations within a specific model. As a final contribution, we introduce a post hoc Uncertainty Quantification (UQ) framework that predicts the accuracy of the model on a per-image basis. By contrasting the average confidence scores of positive (i.e., likely to be matched) and negative predictions determined by OCE, the framework assesses the reliability of the DETR model for each test image.


A Scalable and Transferable Time Series Prediction Framework for Demand Forecasting

arXiv.org Artificial Intelligence

Time series forecasting is one of the most essential and ubiquitous tasks in many business problems, including demand forecasting and logistics optimization. Traditional time series forecasting methods, however, have resulted in small models with limited expressive power because they have difficulty in scaling their model size up while maintaining high accuracy. In this paper, we propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items. We empirically demonstrate that the model size is scalable to up to 0.8 billion parameters. The proposed method not only outperforms existing forecasting models with a significant margin, but it could generalize well to unseen data points when evaluated in a zero-shot fashion on downstream datasets. Last but not least, we present extensive qualitative and quantitative studies to analyze how the proposed model outperforms baseline models and differs from conventional approaches. The original paper was presented as a full paper at ICDM 2022 and is available at: https://ieeexplore.ieee.org/document/10027662.


Representation Reliability and Its Impact on Downstream Tasks

arXiv.org Artificial Intelligence

Self-supervised pre-trained models extract general-purpose representations from data, and quantifying how reliable they are is crucial because many downstream models use these representations as input for their own tasks. To this end, we first introduce a formal definition of representation reliability: the representation for a given test input is considered to be reliable if the downstream models built on top of that representation can consistently generate accurate predictions for that test point. It is desired to estimate the representation reliability without knowing the downstream tasks a priori. We provide a negative result showing that existing frameworks for uncertainty quantification in supervised learning are not suitable for this purpose. As an alternative, we propose an ensemble-based method for quantifying representation reliability, based on the concept of neighborhood consistency in the representation spaces across various pre-trained models. More specifically, the key insight is to use shared neighboring points as anchors to align different representation spaces. We demonstrate through comprehensive numerical experiments that our method is capable of predicting representation reliability with high accuracy.


A Worrying Analysis of Probabilistic Time-series Models for Sales Forecasting

arXiv.org Artificial Intelligence

Probabilistic time-series models become popular in the forecasting field as they help to make optimal decisions under uncertainty. Despite the growing interest, a lack of thorough analysis hinders choosing what is worth applying for the desired task. In this paper, we analyze the performance of three prominent probabilistic time-series models for sales forecasting. To remove the role of random chance in architecture's performance, we make two experimental principles; 1) Large-scale dataset with various cross-validation sets. 2) A standardized training and hyperparameter selection. The experimental results show that a simple Multi-layer Perceptron and Linear Regression outperform the probabilistic models on RMSE without any feature engineering. Overall, the probabilistic models fail to achieve better performance on point estimation, such as RMSE and MAPE, than comparably simple baselines. We analyze and discuss the performances of probabilistic time-series models.


Hop Sampling: A Simple Regularized Graph Learning for Non-Stationary Environments

arXiv.org Machine Learning

Graph representation learning is gaining popularity in a wide range of applications, such as social networks analysis, computational biology, and recommender systems. However, different with positive results from many academic studies, applying graph neural networks (GNNs) in a real-world application is still challenging due to non-stationary environments. The underlying distribution of streaming data changes unexpectedly, resulting in different graph structures (a.k.a., concept drift). Therefore, it is essential to devise a robust graph learning technique so that the model does not overfit to the training graphs. In this work, we present Hop Sampling, a straightforward regularization method that can effectively prevent GNNs from overfishing. The hop sampling randomly selects the number of propagation steps rather than fixing it, and by doing so, it encourages the model to learn meaningful node representation for all intermediate propagation layers and to experience a variety of plausible graphs that are not in the training set. Particularly, we describe the use case of our method in recommender systems, a representative example of the real-world non-stationary case. We evaluated hop sampling on a large-scale real-world LINE dataset and conducted an online A/B/n test in LINE Coupon recommender systems of LINE Wallet Tab. Experimental results demonstrate that the proposed scheme improves the prediction accuracy of GNNs. We observed hop sampling provides 7.97% and 16.93% improvements for NDCG and MAP compared to non-regularized GNN models in our online service. Furthermore, models using hop sampling alleviate the oversmoothing issue in GNNs enabling a deeper model as well as more diversified representation.


Multi-Manifold Learning for Large-scale Targeted Advertising System

arXiv.org Machine Learning

Messenger advertisements (ads) give direct and personal user experience yielding high conversion rates and sales. However, people are skeptical about ads and sometimes perceive them as spam, which eventually leads to a decrease in user satisfaction. Targeted advertising, which serves ads to individuals who may exhibit interest in a particular advertising message, is strongly required. The key to the success of precise user targeting lies in learning the accurate user and ad representation in the embedding space. Most of the previous studies have limited the representation learning in the Euclidean space, but recent studies have suggested hyperbolic manifold learning for the distinct projection of complex network properties emerging from real-world datasets such as social networks, recommender systems, and advertising. We propose a framework that can effectively learn the hierarchical structure in users and ads on the hyperbolic space, and extend to the Multi-Manifold Learning. Our method constructs multiple hyperbolic manifolds with learnable curvatures and maps the representation of user and ad to each manifold. The origin of each manifold is set as the centroid of each user cluster. The user preference for each ad is estimated using the distance between two entities in the hyperbolic space, and the final prediction is determined by aggregating the values calculated from the learned multiple manifolds. We evaluate our method on public benchmark datasets and a large-scale commercial messenger system LINE, and demonstrate its effectiveness through improved performance.


Online Gaussian Process State-Space Model: Learning and Planning for Partially Observable Dynamical Systems

arXiv.org Artificial Intelligence

This paper proposes an online learning method of Gaussian process state-space model (GP-SSM). GP-SSM is a probabilistic representation learning scheme that represents unknown state transition and/or measurement models as Gaussian processes (GPs). While the majority of prior literature on learning of GP-SSM are focused on processing a given set of time series data, data may arrive and accumulate sequentially over time in most dynamical systems. Storing all such sequential data and updating the model over entire data incur large amount of computational resources in space and time. To overcome this difficulty, we propose a practical method, termed \textit{onlineGPSSM}, that incorporates stochastic variational inference (VI) and online VI with novel formulation. The proposed method mitigates the computational complexity without catastrophic forgetting and also support adaptation to changes in a system and/or a real environments. Furthermore, we present application of onlineGPSSM into the reinforcement learning (RL) of partially observable dynamical systems by integrating onlineGPSSM with Bayesian filtering and trajectory optimization algorithms. Numerical examples are presented to demonstrate applicability of the proposed method.


Tripartite Heterogeneous Graph Propagation for Large-scale Social Recommendation

arXiv.org Machine Learning

Graph Neural Networks (GNNs) have been emerging as a promising method for relational representation including recommender systems. However, various challenging issues of social graphs hinder the practical usage of GNNs for social recommendation, such as their complex noisy connections and high heterogeneity. The oversmoothing of GNNs is an obstacle of GNN-based social recommendation as well. Here we propose a new graph embedding method Heterogeneous Graph Propagation (HGP) to tackle these issues. HGP uses a group-user-item tripartite graph as input to reduce the number of edges and the complexity of paths in a social graph. To solve the oversmoothing issue, HGP embeds nodes under a personalized PageRank based propagation scheme, separately for group-user graph and user-item graph. Node embeddings from each graph are integrated using an attention mechanism. We evaluate our HGP on a large-scale real-world dataset consisting of 1,645,279 nodes and 4,711,208 edges. The experimental results show that HGP outperforms several baselines in terms of AUC and F1-score metrics.


Adaptive Path-Integral Autoencoders: Representation Learning and Planning for Dynamical Systems

Neural Information Processing Systems

We present a representation learning algorithm that learns a low-dimensional latent dynamical system from high-dimensional sequential raw data, e.g., video. The framework builds upon recent advances in amortized inference methods that use both an inference network and a refinement procedure to output samples from a variational distribution given an observation sequence, and takes advantage of the duality between control and inference to approximately solve the intractable inference problem using the path integral control approach. The learned dynamical model can be used to predict and plan the future states; we also present the efficient planning method that exploits the learned low-dimensional latent dynamics. Numerical experiments show that the proposed path-integral control based variational inference method leads to tighter lower bounds in statistical model learning of sequential data. Supplementary video: https://youtu.be/xCp35crUoLQ


Adaptive Path-Integral Autoencoders: Representation Learning and Planning for Dynamical Systems

Neural Information Processing Systems

We present a representation learning algorithm that learns a low-dimensional latent dynamical system from high-dimensional sequential raw data, e.g., video. The framework builds upon recent advances in amortized inference methods that use both an inference network and a refinement procedure to output samples from a variational distribution given an observation sequence, and takes advantage of the duality between control and inference to approximately solve the intractable inference problem using the path integral control approach. The learned dynamical model can be used to predict and plan the future states; we also present the efficient planning method that exploits the learned low-dimensional latent dynamics. Numerical experiments show that the proposed path-integral control based variational inference method leads to tighter lower bounds in statistical model learning of sequential data. Supplementary video: https://youtu.be/xCp35crUoLQ