Park, Mijung

Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM)

Neural Information Processing Systems

We introduce the Locally Linear Latent Variable Model (LL-LVM), a probabilistic model for non-linear manifold discovery that describes a joint distribution over observations, their manifold coordinates and locally linear maps conditioned on a set of neighbourhood relationships. The model allows straightforward variational optimisation of the posterior distribution on coordinates and locally linear maps from the latent space to the observation space given the data. Thus, the LL-LVM encapsulates the local-geometry preserving intuitions that underlie non-probabilistic methods such as locally linear embedding (LLE). Its probabilistic semantics make it easy to evaluate the quality of hypothesised neighbourhood relationships, select the intrinsic dimensionality of the manifold, construct out-of-sample extensions and to combine the manifold model with additional probabilistic models that capture the structure of coordinates within the manifold. Papers published at the Neural Information Processing Systems Conference.

Bayesian active learning with localized priors for fast receptive field characterization

Neural Information Processing Systems

Active learning can substantially improve the yield of neurophysiology experiments by adaptively selecting stimuli to probe a neuron's receptive field (RF) in real time. Bayesian active learning methods maintain a posterior distribution over the RF, and select stimuli to maximally reduce posterior entropy on each time step. However, existing methods tend to rely on simple Gaussian priors, and do not exploit uncertainty at the level of hyperparameters when determining an optimal stimulus. This uncertainty can play a substantial role in RF characterization, particularly when RFs are smooth, sparse, or local in space and time. In this paper, we describe a novel framework for active learning under hierarchical, conditionally Gaussian priors.

Active learning of neural response functions with Gaussian processes

Neural Information Processing Systems

A sizable literature has focused on the problem of estimating a low-dimensional feature space capturing a neuron's stimulus sensitivity. However, comparatively little work has addressed the problem of estimating the nonlinear function from feature space to a neuron's output spike rate. Here, we use a Gaussian process (GP) prior over the infinite-dimensional space of nonlinear functions to obtain Bayesian estimates of the "nonlinearity" in the linear-nonlinear-Poisson (LNP) encoding model. This offers flexibility, robustness, and computational tractability compared to traditional methods (e.g., parametric forms, histograms, cubic splines). Most importantly, we develop a framework for optimal experimental design based on uncertainty sampling.

Bayesian inference for low rank spatiotemporal neural receptive fields

Neural Information Processing Systems

The receptive field (RF) of a sensory neuron describes how the neuron integrates sensory stimuli over time and space. In typical experiments with naturalistic or flickering spatiotemporal stimuli, RFs are very high-dimensional, due to the large number of coefficients needed to specify an integration profile across time and space. Estimating these coefficients from small amounts of data poses a variety of challenging statistical and computational problems. Here we address these challenges by developing Bayesian reduced rank regression methods for RF estimation. This corresponds to modeling the RF as a sum of several space-time separable (i.e., rank-1) filters, which proves accurate even for neurons with strongly oriented space-time RFs.

Sparse Bayesian structure learning with "dependent relevance determination" priors

Neural Information Processing Systems

In many problem settings, parameter vectors are not merely sparse, but dependent in such a way that non-zero coefficients tend to cluster together. We refer to this form of dependency as "region sparsity". Classical sparse regression methods, such as the lasso and automatic relevance determination (ARD), model parameters as independent a priori, and therefore do not exploit such dependencies. Here we introduce a hierarchical model for smooth, region-sparse weight vectors and tensors in a linear regression setting. Our approach represents a hierarchical extension of the relevance determination framework, where we add a transformed Gaussian process to model the dependencies between the prior variances of regression weights.

DP-MAC: The Differentially Private Method of Auxiliary Coordinates for Deep Learning Machine Learning

Developing a differentially private deep learning algorithm is challenging, due to the difficulty in analyzing the sensitivity of objective functions that are typically used to train deep neural networks. Many existing methods resort to the stochastic gradient descent algorithm and apply a pre-defined sensitivity to the gradients for privatizing weights. However, their slow convergence typically yields a high cumulative privacy loss. Here, we take a different route by employing the method of auxiliary coordinates, which allows us to independently update the weights per layer by optimizing a per-layer objective function. This objective function can be well approximated by a low-order Taylor's expansion, in which sensitivity analysis becomes tractable. We perturb the coefficients of the expansion for privacy, which we optimize using more advanced optimization routines than SGD for faster convergence. We empirically show that our algorithm provides a decent trained model quality under a modest privacy budget.

ABCDP: Approximate Bayesian Computation Meets Differential Privacy Machine Learning

We develop a novel approximate Bayesian computation (ABC) framework, ABCDP, that obeys the notion of differential privacy (DP). Under our framework, simply performing ABC inference with a mild modification yields differentially private posterior samples. We theoretically analyze the interplay between the ABC similarity threshold $\epsilon_{abc}$ (for comparing the similarity between real and simulated data) and the resulting privacy level $\epsilon_{dp}$ of the posterior samples, in two types of frequently-used ABC algorithms. We apply ABCDP to simulated data as well as privacy-sensitive real data. The results suggest that tuning the similarity threshold $\epsilon_{abc}$ helps us obtain better privacy and accuracy trade-off.

Neuron ranking -- an informed way to condense convolutional neural networks architecture Machine Learning

Convolutional neural networks (CNNs) in recent years have made a dramatic impact in science, technology and industry, yet the theoretical mechanism of CNN architecture design remains surprisingly vague. The CNN neurons, including its distinctive element, convolutional filters, are known to be learnable features, yet their individual role in producing the output is rather unclear. The thesis of this work is that not all neurons are equally important and some of them contain more useful information to perform a given task . Consequently, we quantify the significance of each filter and rank its importance in describing input to produce the desired output. This work presents two different methods: (1) a game theoretical approach based on Shapley value which computes the marginal contribution of each filter; and (2) a probabilistic approach based on what-we-call, the importance switch using variational inference. Strikingly, these two vastly different methods produce similar experimental results, confirming the general theory that some of the filters are inherently more important that the others. The learned ranks can be readily useable for network compression and interpretability.

Interpretable and Differentially Private Predictions Machine Learning

Interpretable predictions, where it is clear why a machine learning model has made a particular decision, can compromise privacy by revealing the characteristics of individual data points. This raises the central question addressed in this paper: Can models be interpretable without compromising privacy? For complex "big" data fit by correspondingly rich models, balancing privacy and explainability is particularly challenging, such that this question has remained largely unexplored. In this paper, we propose a family of simple models in the aim of approximating complex models using several locally linear maps per class to provide high classification accuracy, as well as differentially private explanations on the classification. We illustrate the usefulness of our approach on several image benchmark datasets as well as a medical dataset.

Private Causal Inference using Propensity Scores Machine Learning

The use of propensity score methods to reduce selection bias when determining causal effects is common practice for observational studies. Although such studies in econometrics, social science, and medicine often rely on sensitive data, there has been no prior work on privatising the propensity scores used to ascertain causal effects from observed data. In this paper, we demonstrate how to privatise the propensity score and quantify how the added noise for privatisation affects the propensity score as well as subsequent causal inference. We test our methods on both simulated and real-world datasets. The results are consistent with our theoretical findings that the privatisation preserves the validity of subsequent causal analysis with high probability. More importantly, our results empirically demonstrate that the proposed solutions are practical for moderately-sized datasets.