Park, Hogun
CIMAGE: Exploiting the Conditional Independence in Masked Graph Auto-encoders
Park, Jongwon, Jung, Heesoo, Park, Hogun
Recent Self-Supervised Learning (SSL) methods encapsulating relational information via masking in Graph Neural Networks (GNNs) have shown promising performance. However, most existing approaches rely on random masking strategies in either feature or graph space, which may fail to capture task-relevant information fully. We posit that this limitation stems from an inability to achieve minimum redundancy between masked and unmasked components while ensuring maximum relevance of both to potential downstream tasks. Conditional Independence (CI) inherently satisfies the minimum redundancy and maximum relevance criteria, but its application typically requires access to downstream labels. To address this challenge, we introduce CIMAGE, a novel approach that leverages Conditional Independence to guide an effective masking strategy within the latent space. CIMAGE utilizes CI-aware latent factor decomposition to generate two distinct contexts, leveraging high-confidence pseudo-labels derived from unsupervised graph clustering. In this framework, the pretext task involves reconstructing the masked second context solely from the information provided by the first context. Our theoretical analysis further supports the superiority of CIMAGE's novel CI-aware masking method by demonstrating that the learned embedding exhibits approximate linear separability, which enables accurate predictions for the downstream task. Comprehensive evaluations across diverse graph benchmarks illustrate the advantage of CIMAGE, with notably higher average rankings on node classification and link prediction tasks. Notably, our proposed model highlights the under-explored potential of CI in enhancing graph SSL methodologies and offers enriched insights for effective graph representation learning.
AudioGenX: Explainability on Text-to-Audio Generative Models
Kang, Hyunju, Han, Geonhee, Jeong, Yoonjae, Park, Hogun
Text-to-audio generation models (TAG) have achieved significant advances in generating audio conditioned on text descriptions. However, a critical challenge lies in the lack of transparency regarding how each textual input impacts the generated audio. To address this issue, we introduce AudioGenX, an Explainable AI (XAI) method that provides explanations for text-to-audio generation models by highlighting the importance of input tokens. AudioGenX optimizes an Explainer by leveraging factual and counterfactual objective functions to provide faithful explanations at the audio token level. This method offers a detailed and comprehensive understanding of the relationship between text inputs and audio outputs, enhancing both the explainability and trustworthiness of TAG models. Extensive experiments demonstrate the effectiveness of AudioGenX in producing faithful explanations, benchmarked against existing methods using novel evaluation metrics specifically designed for audio generation tasks.
MAMS: Model-Agnostic Module Selection Framework for Video Captioning
Lee, Sangho, Chun, Il Yong, Park, Hogun
Multi-modal transformers are rapidly gaining attention in video captioning tasks. Existing multi-modal video captioning methods typically extract a fixed number of frames, which raises critical challenges. When a limited number of frames are extracted, important frames with essential information for caption generation may be missed. Conversely, extracting an excessive number of frames includes consecutive frames, potentially causing redundancy in visual tokens extracted from consecutive video frames. To extract an appropriate number of frames for each video, this paper proposes the first model-agnostic module selection framework in video captioning that has two main functions: (1) selecting a caption generation module with an appropriate size based on visual tokens extracted from video frames, and (2) constructing subsets of visual tokens for the selected caption generation module. Furthermore, we propose a new adaptive attention masking scheme that enhances attention on important visual tokens. Our experiments on three different benchmark datasets demonstrate that the proposed framework significantly improves the performance of three recent video captioning models.
Improving Multi-hop Logical Reasoning in Knowledge Graphs with Context-Aware Query Representation Learning
Kim, Jeonghoon, Jung, Heesoo, Jang, Hyeju, Park, Hogun
Multi-hop logical reasoning on knowledge graphs is a pivotal task in natural language processing, with numerous approaches aiming to answer First-Order Logic (FOL) queries. Recent geometry (e.g., box, cone) and probability (e.g., beta distribution)-based methodologies have effectively addressed complex FOL queries. However, a common challenge across these methods lies in determining accurate geometric bounds or probability parameters for these queries. The challenge arises because existing methods rely on linear sequential operations within their computation graphs, overlooking the logical structure of the query and the relation-induced information that can be gleaned from the relations of the query, which we call the context of the query. To address the problem, we propose a model-agnostic methodology that enhances the effectiveness of existing multi-hop logical reasoning approaches by fully integrating the context of the FOL query graph. Our approach distinctively discerns (1) the structural context inherent to the query structure and (2) the relation-induced context unique to each node in the query graph as delineated in the corresponding knowledge graph. This dual-context paradigm helps nodes within a query graph attain refined internal representations throughout the multi-hop reasoning steps. Through experiments on two datasets, our method consistently enhances the three multi-hop reasoning foundation models, achieving performance improvements of up to 19.5%. Our code is available at https://github.com/kjh9503/caqr.
Toward a Better Understanding of Loss Functions for Collaborative Filtering
Park, Seongmin, Yoon, Mincheol, Lee, Jae-woong, Park, Hogun, Lee, Jongwuk
Collaborative filtering (CF) is a pivotal technique in modern recommender systems. The learning process of CF models typically consists of three components: interaction encoder, loss function, and negative sampling. Although many existing studies have proposed various CF models to design sophisticated interaction encoders, recent work shows that simply reformulating the loss functions can achieve significant performance gains. This paper delves into analyzing the relationship among existing loss functions. Our mathematical analysis reveals that the previous loss functions can be interpreted as alignment and uniformity functions: (i) the alignment matches user and item representations, and (ii) the uniformity disperses user and item distributions. Inspired by this analysis, we propose a novel loss function that improves the design of alignment and uniformity considering the unique patterns of datasets called Margin-aware Alignment and Weighted Uniformity (MAWU). The key novelty of MAWU is two-fold: (i) margin-aware alignment (MA) mitigates user/item-specific popularity biases, and (ii) weighted uniformity (WU) adjusts the significance between user and item uniformities to reflect the inherent characteristics of datasets. Extensive experimental results show that MF and LightGCN equipped with MAWU are comparable or superior to state-of-the-art CF models with various loss functions on three public datasets.
Generating Post-hoc Explanations for Skip-gram-based Node Embeddings by Identifying Important Nodes with Bridgeness
Park, Hogun, Neville, Jennifer
Node representation learning in a network is an important machine learning technique for encoding relational information in a continuous vector space while preserving the inherent properties and structures of the network. Recently, unsupervised node embedding methods such as DeepWalk, LINE, struc2vec, PTE, UserItem2vec, and RWJBG have emerged from the Skip-gram model and perform better performance in several downstream tasks such as node classification and link prediction than the existing relational models. However, providing post-hoc explanations of Skip-gram-based embeddings remains a challenging problem because of the lack of explanation methods and theoretical studies applicable for embeddings. In this paper, we first show that global explanations to the Skip-gram-based embeddings can be found by computing bridgeness under a spectral cluster-aware local perturbation. Moreover, a novel gradient-based explanation method, which we call GRAPH-wGD, is proposed that allows the top-q global explanations about learned graph embedding vectors more efficiently. Experiments show that the ranking of nodes by scores using GRAPH-wGD is highly correlated with true bridgeness scores. We also observe that the top-q node-level explanations selected by GRAPH-wGD have higher importance scores and produce more changes in class label prediction when perturbed, compared with the nodes selected by recent alternatives, using five real-world graphs.
Incorporating Experts' Judgment into Machine Learning Models
Park, Hogun, Megahed, Aly, Yin, Peifeng, Ong, Yuya, Mahajan, Pravar, Guo, Pei
Machine learning (ML) models have been quite successful in predicting outcomes in many applications. However, in some cases, domain experts might have a judgment about the expected outcome that might conflict with the prediction of ML models. One main reason for this is that the training data might not be totally representative of the population. In this paper, we present a novel framework that aims at leveraging experts' judgment to mitigate the conflict. The underlying idea behind our framework is that we first determine, using a generative adversarial network, the degree of representation of an unlabeled data point in the training data. Then, based on such degree, we correct the \textcolor{black}{machine learning} model's prediction by incorporating the experts' judgment into it, where the higher that aforementioned degree of representation, the less the weight we put on the expert intuition that we add to our corrected output, and vice-versa. We perform multiple numerical experiments on synthetic data as well as two real-world case studies (one from the IT services industry and the other from the financial industry). All results show the effectiveness of our framework; it yields much higher closeness to the experts' judgment with minimal sacrifice in the prediction accuracy, when compared to multiple baseline methods. We also develop a new evaluation metric that combines prediction accuracy with the closeness to experts' judgment. Our framework yields statistically significant results when evaluated on that metric.
Dual Policy Learning for Aggregation Optimization in Graph Neural Network-based Recommender Systems
Jung, Heesoo, Kim, Sangpil, Park, Hogun
Graph Neural Networks (GNNs) provide powerful representations for recommendation tasks. GNN-based recommendation systems capture the complex high-order connectivity between users and items by aggregating information from distant neighbors and can improve the performance of recommender systems. Recently, Knowledge Graphs (KGs) have also been incorporated into the user-item interaction graph to provide more abundant contextual information; they are exploited to address cold-start problems and enable more explainable aggregation in GNN-based recommender systems (GNN-Rs). However, due to the heterogeneous nature of users and items, developing an effective aggregation strategy that works across multiple GNN-Rs, such as LightGCN and KGAT, remains a challenge. In this paper, we propose a novel reinforcement learning-based message passing framework for recommender systems, which we call DPAO (Dual Policy framework for Aggregation Optimization). This framework adaptively determines high-order connectivity to aggregate users and items using dual policy learning. Dual policy learning leverages two Deep-Q-Network models to exploit the user- and item-aware feedback from a GNN-R and boost the performance of the target GNN-R. Our proposed framework was evaluated with both non-KG-based and KG-based GNN-R models on six real-world datasets, and their results show that our proposed framework significantly enhances the recent base model, improving nDCG and Recall by up to 63.7% and 42.9%, respectively. Our implementation code is available at https://github.com/steve30572/DPAO/.