Goto

Collaborating Authors

 Park, Chanyoung


Adaptive Self-training Framework for Fine-grained Scene Graph Generation

arXiv.org Artificial Intelligence

Scene graph generation (SGG) models have suffered from inherent problems regarding the benchmark datasets such as the long-tailed predicate distribution and missing annotation problems. In this work, we aim to alleviate the long-tailed problem of SGG by utilizing unannotated triplets. To this end, we introduce a Self-Training framework for SGG (ST-SGG) that assigns pseudo-labels for unannotated triplets based on which the SGG models are trained. While there has been significant progress in self-training for image recognition, designing a self-training framework for the SGG task is more challenging due to its inherent nature such as the semantic ambiguity and the long-tailed distribution of predicate classes. Hence, we propose a novel pseudo-labeling technique for SGG, called Class-specific Adaptive Thresholding with Momentum (CATM), which is a model-agnostic framework that can be applied to any existing SGG models. Furthermore, we devise a graph structure learner (GSL) that is beneficial when adopting our proposed self-training framework to the state-of-the-art message-passing neural network (MPNN)-based SGG models. Our extensive experiments verify the effectiveness of ST-SGG on various SGG models, particularly in enhancing the performance on fine-grained predicate classes.


STERLING: Synergistic Representation Learning on Bipartite Graphs

arXiv.org Artificial Intelligence

A fundamental challenge of bipartite graph representation learning is how to extract informative node embeddings. Self-Supervised Learning (SSL) is a promising paradigm to address this challenge. Most recent bipartite graph SSL methods are based on contrastive learning which learns embeddings by discriminating positive and negative node pairs. Contrastive learning usually requires a large number of negative node pairs, which could lead to computational burden and semantic errors. In this paper, we introduce a novel synergistic representation learning model (STERLING) to learn node embeddings without negative node pairs. STERLING preserves the unique local and global synergies in bipartite graphs. The local synergies are captured by maximizing the similarity of the inter-type and intra-type positive node pairs, and the global synergies are captured by maximizing the mutual information of co-clusters. Theoretical analysis demonstrates that STERLING could improve the connectivity between different node types in the embedding space. Extensive empirical evaluation on various benchmark datasets and tasks demonstrates the effectiveness of STERLING for extracting node embeddings.


Density of States Prediction of Crystalline Materials via Prompt-guided Multi-Modal Transformer

arXiv.org Artificial Intelligence

The density of states (DOS) is a spectral property of crystalline materials, which provides fundamental insights into various characteristics of the materials. While previous works mainly focus on obtaining high-quality representations of crystalline materials for DOS prediction, we focus on predicting the DOS from the obtained representations by reflecting the nature of DOS: DOS determines the general distribution of states as a function of energy. That is, DOS is not solely determined by the crystalline material but also by the energy levels, which has been neglected in previous works. In this paper, we propose to integrate heterogeneous information obtained from the crystalline materials and the energies via a multi-modal transformer, thereby modeling the complex relationships between the atoms in the crystalline materials and various energy levels for DOS prediction. Moreover, we propose to utilize prompts to guide the model to learn the crystal structural system-specific interactions between crystalline materials and energies. Extensive experiments on two types of DOS, i.e., Phonon DOS and Electron DOS, with various real-world scenarios demonstrate the superiority of DOSTransformer.


Stoichiometry Representation Learning with Polymorphic Crystal Structures

arXiv.org Artificial Intelligence

Despite the recent success of machine learning (ML) in materials science, its success heavily relies on the structural description of crystal, which is itself computationally demanding and occasionally unattainable. Stoichiometry descriptors can be an alternative approach, which reveals the ratio between elements involved to form a certain compound without any structural information. However, it is not trivial to learn the representations of stoichiometry due to the nature of materials science called polymorphism, i.e., a single stoichiometry can exist in multiple structural forms due to the flexibility of atomic arrangements, inducing uncertainties in representation. To this end, we propose PolySRL, which learns the probabilistic representation of stoichiometry by utilizing the readily available structural information, whose uncertainty reveals the polymorphic structures of stoichiometry. Extensive experiments on sixteen datasets demonstrate the superiority of PolySRL, and analysis of uncertainties shed light on the applicability of PolySRL in real-world material discovery.


Handover Protocol Learning for LEO Satellite Networks: Access Delay and Collision Minimization

arXiv.org Artificial Intelligence

This study presents a novel deep reinforcement learning (DRL)-based handover (HO) protocol, called DHO, specifically designed to address the persistent challenge of long propagation delays in low-Earth orbit (LEO) satellite networks' HO procedures. DHO skips the Measurement Report (MR) in the HO procedure by leveraging its predictive capabilities after being trained with a pre-determined LEO satellite orbital pattern. This simplification eliminates the propagation delay incurred during the MR phase, while still providing effective HO decisions. The proposed DHO outperforms the legacy HO protocol across diverse network conditions in terms of access delay, collision rate, and handover success rate, demonstrating the practical applicability of DHO in real-world networks. Furthermore, the study examines the trade-off between access delay and collision rate and also evaluates the training performance and convergence of DHO using various DRL algorithms.


Interpretable Prototype-based Graph Information Bottleneck

arXiv.org Artificial Intelligence

The success of Graph Neural Networks (GNNs) has led to a need for understanding their decision-making process and providing explanations for their predictions, which has given rise to explainable AI (XAI) that offers transparent explanations for black-box models. Recently, the use of prototypes has successfully improved the explainability of models by learning prototypes to imply training graphs that affect the prediction. However, these approaches tend to provide prototypes with excessive information from the entire graph, leading to the exclusion of key substructures or the inclusion of irrelevant substructures, which can limit both the interpretability and the performance of the model in downstream tasks. In this work, we propose a novel framework of explainable GNNs, called interpretable Prototype-based Graph Information Bottleneck (PGIB), that incorporates prototype learning within the information bottleneck framework to provide prototypes with the key subgraph from the input graph that is important for the model prediction. This is the first work that incorporates prototype learning into the process of identifying the key subgraphs that have a critical impact on the prediction performance. Extensive experiments, including qualitative analysis, demonstrate that PGIB outperforms state-of-the-art methods in terms of both prediction performance and explainability.


Unsupervised Episode Generation for Graph Meta-learning

arXiv.org Artificial Intelligence

We investigate Unsupervised Episode Generation methods to solve Few-Shot Node-Classification (FSNC) task via Meta-learning without labels. Dominant meta-learning methodologies for FSNC were developed under the existence of abundant labeled nodes from diverse base classes for training, which however may not be possible to obtain in the real-world. Although a few studies tried to tackle the label-scarcity problem in graph meta-learning, they still rely on a few labeled nodes, which hinders the full utilization of the information of all nodes in a graph. Despite the effectiveness of graph contrastive learning (GCL) methods in the FSNC task without using the label information, they mainly learn generic node embeddings without consideration of the downstream task to be solved, which may limit its performance in the FSNC task. To this end, we propose a simple yet effective unsupervised episode generation method to benefit from the generalization ability of meta-learning for the FSNC task, while resolving the label-scarcity problem. Our proposed method, called Neighbors as Queries (NaQ), generates training episodes based on pre-calculated node-node similarity. Moreover, NaQ is model-agnostic; hence, it can be used to train any existing supervised graph meta-learning methods in an unsupervised manner, while not sacrificing much of their performance or sometimes even improving them. Extensive experimental results demonstrate the potential of our unsupervised episode generation methods for graph meta-learning towards the FSNC task. Our code is available at: https://github.com/JhngJng/NaQ-PyTorch


Task Relation-aware Continual User Representation Learning

arXiv.org Artificial Intelligence

User modeling, which learns to represent users into a low-dimensional representation space based on their past behaviors, got a surge of interest from the industry for providing personalized services to users. Previous efforts in user modeling mainly focus on learning a task-specific user representation that is designed for a single task. However, since learning task-specific user representations for every task is infeasible, recent studies introduce the concept of universal user representation, which is a more generalized representation of a user that is relevant to a variety of tasks. Despite their effectiveness, existing approaches for learning universal user representations are impractical in real-world applications due to the data requirement, catastrophic forgetting and the limited learning capability for continually added tasks. In this paper, we propose a novel continual user representation learning method, called TERACON, whose learning capability is not limited as the number of learned tasks increases while capturing the relationship between the tasks. The main idea is to introduce an embedding for each task, i.e., task embedding, which is utilized to generate task-specific soft masks that not only allow the entire model parameters to be updated until the end of training sequence, but also facilitate the relationship between the tasks to be captured. Moreover, we introduce a novel knowledge retention module with pseudo-labeling strategy that successfully alleviates the long-standing problem of continual learning, i.e., catastrophic forgetting. Extensive experiments on public and proprietary real-world datasets demonstrate the superiority and practicality of TERACON. Our code is available at https://github.com/Sein-Kim/TERACON.


Class Label-aware Graph Anomaly Detection

arXiv.org Artificial Intelligence

Unsupervised GAD methods assume the lack of anomaly labels, i.e., whether a node is anomalous or not. One common observation we made from previous unsupervised methods is that they not only assume the absence of such anomaly labels, but also the absence of class labels (the class a node belongs to used in a general node classification task). In this work, we study the utility of class labels for unsupervised GAD; in particular, how they enhance the detection of structural anomalies. To this end, we propose a Class Label-aware Graph Anomaly Detection framework (CLAD) that utilizes a limited amount of labeled nodes to enhance the performance of unsupervised GAD. Extensive experiments on ten datasets demonstrate the superior performance of CLAD in comparison to existing unsupervised GAD methods, even in the absence of ground-truth class label information. The source code for CLAD is available at \url{https://github.com/jhkim611/CLAD}.


S-Mixup: Structural Mixup for Graph Neural Networks

arXiv.org Artificial Intelligence

Existing studies for applying the mixup technique on graphs mainly focus on graph classification tasks, while the research in node classification is still under-explored. In this paper, we propose a novel mixup augmentation for node classification called Structural Mixup (S-Mixup). The core idea is to take into account the structural information while mixing nodes. Specifically, S-Mixup obtains pseudo-labels for unlabeled nodes in a graph along with their prediction confidence via a Graph Neural Network (GNN) classifier. These serve as the criteria for the composition of the mixup pool for both inter and intra-class mixups. Furthermore, we utilize the edge gradient obtained from the GNN training and propose a gradient-based edge selection strategy for selecting edges to be attached to the nodes generated by the mixup. Through extensive experiments on real-world benchmark datasets, we demonstrate the effectiveness of S-Mixup evaluated on the node classification task. We observe that S-Mixup enhances the robustness and generalization performance of GNNs, especially in heterophilous situations. The source code of S-Mixup can be found at \url{https://github.com/SukwonYun/S-Mixup}