Pang, Richard Yuanzhe
Self-Generated Critiques Boost Reward Modeling for Language Models
Yu, Yue, Chen, Zhengxing, Zhang, Aston, Tan, Liang, Zhu, Chenguang, Pang, Richard Yuanzhe, Qian, Yundi, Wang, Xuewei, Gururangan, Suchin, Zhang, Chao, Kambadur, Melanie, Mahajan, Dhruv, Hou, Rui
Reinforcement Learning from Human Feedback (RLHF) has been widely adopted to align large language models (LLMs) with human preferences (Ouyang et al., 2022; Touvron et al., 2023; Dubey et al., 2024; Reid et al., 2024). Central to the RLHF process is the reward model (RM), which is trained to assign scores that quantify how well the model's outputs align with human judgments. The reward model defines optimization direction during training (e.g., reward signal in PPO), encouraging a policy LLM to generate more helpful, honest, and harmless responses ultimately enhancing the model's generation quality in real-world applications. Standard reward models are typically trained using preference pairs and optimized with pairwise logistic loss (Bradley and Terry, 1952), producing a single scalar score for each response. However, outputting a scalar score not only is hard to interpret but also fails to fully leverage the inherent language modeling capability that LLMs obtain from pretraining and post-training (Zhang et al., 2024). Consequently, these reward models tend to be less data-efficient and prone to robustness issues, such as reward hacking (Skalse et al., 2022; Singhal et al., 2023; Chen et al., 2024).
Transformers Struggle to Learn to Search
Saparov, Abulhair, Pawar, Srushti, Pimpalgaonkar, Shreyas, Joshi, Nitish, Pang, Richard Yuanzhe, Padmakumar, Vishakh, Kazemi, Seyed Mehran, Kim, Najoung, He, He
Search is an ability foundational in many important tasks, and recent studies have shown that large language models (LLMs) struggle to perform search robustly. It is unknown whether this inability is due to a lack of data, insufficient model parameters, or fundamental limitations of the transformer architecture. In this work, we use the foundational graph connectivity problem as a testbed to generate effectively limitless high-coverage data to train small transformers and test whether they can learn to perform search. We find that, when given the right training distribution, the transformer is able to learn to search. We analyze the algorithm that the transformer has learned through a novel mechanistic interpretability technique that enables us to extract the computation graph from the trained model. We find that for each vertex in the input graph, transformers compute the set of vertices reachable from that vertex. Each layer then progressively expands these sets, allowing the model to search over a number of vertices exponential in the number of layers. However, we find that as the input graph size increases, the transformer has greater difficulty in learning the task. This difficulty is not resolved even as the number of parameters is increased, suggesting that increasing model scale will not lead to robust search abilities. We also find that performing search in-context (i.e., chain-of-thought) does not resolve this inability to learn to search on larger graphs.
Self-Consistency Preference Optimization
Prasad, Archiki, Yuan, Weizhe, Pang, Richard Yuanzhe, Xu, Jing, Fazel-Zarandi, Maryam, Bansal, Mohit, Sukhbaatar, Sainbayar, Weston, Jason, Yu, Jane
Self-alignment, whereby models learn to improve themselves without human annotation, is a rapidly growing research area. However, existing techniques often fail to improve complex reasoning tasks due to the difficulty of assigning correct rewards. An orthogonal approach that is known to improve correctness is self-consistency, a method applied at inference time based on multiple sampling in order to find the most consistent answer. In this work, we extend the self-consistency concept to help train models. We thus introduce self-consistency preference optimization (ScPO), which iteratively trains consistent answers to be preferred over inconsistent ones on unsupervised new problems. We show ScPO leads to large improvements over conventional reward model training on reasoning tasks such as GSM8K and MATH, closing the gap with supervised training with gold answers or preferences, and that combining ScPO with standard supervised learning improves results even further. On ZebraLogic, ScPO finetunes Llama-3 8B to be superior to Llama-3 70B, Gemma-2 27B, and Claude-3 Haiku.
Iterative Reasoning Preference Optimization
Pang, Richard Yuanzhe, Yuan, Weizhe, Cho, Kyunghyun, He, He, Sukhbaatar, Sainbayar, Weston, Jason
Iterative preference optimization methods have recently been shown to perform well for general instruction tuning tasks, but typically make little improvement on reasoning tasks (Yuan et al., 2024, Chen et al., 2024). In this work we develop an iterative approach that optimizes the preference between competing generated Chain-of-Thought (CoT) candidates by optimizing for winning vs. losing reasoning steps that lead to the correct answer. We train using a modified DPO loss (Rafailov et al., 2023) with an additional negative log-likelihood term, which we find to be crucial. We show reasoning improves across repeated iterations of this scheme. While only relying on examples in the training set, our approach results in increasing accuracy on GSM8K, MATH, and ARC-Challenge for Llama-2-70B-Chat, outperforming other Llama-2-based models not relying on additionally sourced datasets. For example, we see a large improvement from 55.6% to 81.6% on GSM8K and an accuracy of 88.7% with majority voting out of 32 samples.
An Introduction to Vision-Language Modeling
Bordes, Florian, Pang, Richard Yuanzhe, Ajay, Anurag, Li, Alexander C., Bardes, Adrien, Petryk, Suzanne, Maรฑas, Oscar, Lin, Zhiqiu, Mahmoud, Anas, Jayaraman, Bargav, Ibrahim, Mark, Hall, Melissa, Xiong, Yunyang, Lebensold, Jonathan, Ross, Candace, Jayakumar, Srihari, Guo, Chuan, Bouchacourt, Diane, Al-Tahan, Haider, Padthe, Karthik, Sharma, Vasu, Xu, Hu, Tan, Xiaoqing Ellen, Richards, Megan, Lavoie, Samuel, Astolfi, Pietro, Hemmat, Reyhane Askari, Chen, Jun, Tirumala, Kushal, Assouel, Rim, Moayeri, Mazda, Talattof, Arjang, Chaudhuri, Kamalika, Liu, Zechun, Chen, Xilun, Garrido, Quentin, Ullrich, Karen, Agrawal, Aishwarya, Saenko, Kate, Celikyilmaz, Asli, Chandra, Vikas
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
Self-Rewarding Language Models
Yuan, Weizhe, Pang, Richard Yuanzhe, Cho, Kyunghyun, Li, Xian, Sukhbaatar, Sainbayar, Xu, Jing, Weston, Jason
We posit that to achieve superhuman agents, future models require superhuman feedback in order to provide an adequate training signal. Current approaches commonly train reward models from human preferences, which may then be bottlenecked by human performance level, and secondly these separate frozen reward models cannot then learn to improve during LLM training. In this work, we study Self-Rewarding Language Models, where the language model itself is used via LLM-as-a-Judge prompting to provide its own rewards during training. We show that during Iterative DPO training that not only does instruction following ability improve, but also the ability to provide high-quality rewards to itself. Fine-tuning Llama 2 70B on three iterations of our approach yields a model that outperforms many existing systems on the AlpacaEval 2.0 leaderboard, including Claude 2, Gemini Pro, and GPT-4 0613. While there is much left still to explore, this work opens the door to the possibility of models that can continually improve in both axes.
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
Rein, David, Hou, Betty Li, Stickland, Asa Cooper, Petty, Jackson, Pang, Richard Yuanzhe, Dirani, Julien, Michael, Julian, Bowman, Samuel R.
We present GPQA, a challenging dataset of 448 multiple-choice questions written by domain experts in biology, physics, and chemistry. We ensure that the questions are high-quality and extremely difficult: experts who have or are pursuing PhDs in the corresponding domains reach 65% accuracy (74% when discounting clear mistakes the experts identified in retrospect), while highly skilled non-expert validators only reach 34% accuracy, despite spending on average over 30 minutes with unrestricted access to the web (i.e., the questions are "Google-proof"). The questions are also difficult for state-of-the-art AI systems, with our strongest GPT-4 based baseline achieving 39% accuracy. If we are to use future AI systems to help us answer very hard questions, for example, when developing new scientific knowledge, we need to develop scalable oversight methods that enable humans to supervise their outputs, which may be difficult even if the supervisors are themselves skilled and knowledgeable. The difficulty of GPQA both for skilled non-experts and frontier AI systems should enable realistic scalable oversight experiments, which we hope can help devise ways for human experts to reliably get truthful information from AI systems that surpass human capabilities.
Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples
Saparov, Abulhair, Pang, Richard Yuanzhe, Padmakumar, Vishakh, Joshi, Nitish, Kazemi, Seyed Mehran, Kim, Najoung, He, He
Given the intractably large size of the space of proofs, any model that is capable of general deductive reasoning must generalize to proofs of greater complexity. Recent studies have shown that large language models (LLMs) possess some abstract deductive reasoning ability given chain-of-thought prompts. However, they have primarily been tested on proofs using modus ponens or of a specific size, and from the same distribution as the in-context examples. To measure the general deductive reasoning ability of LLMs, we test on a broad set of deduction rules and measure their ability to generalize to more complex proofs from simpler demonstrations from multiple angles: depth-, width-, and compositional generalization. To facilitate systematic exploration, we construct a new synthetic and programmable reasoning dataset that enables control over deduction rules and proof complexity. Our experiments on four LLMs of various sizes and training objectives show that they are able to generalize to compositional proofs. However, they have difficulty generalizing to longer proofs, and they require explicit demonstrations to produce hypothetical subproofs, specifically in proof by cases and proof by contradiction.
Leveraging Implicit Feedback from Deployment Data in Dialogue
Pang, Richard Yuanzhe, Roller, Stephen, Cho, Kyunghyun, He, He, Weston, Jason
We study improving social conversational agents by learning from natural dialogue between users and a deployed model, without extra annotations. To implicitly measure the quality of a machine-generated utterance, we leverage signals like user response length, sentiment and reaction of the future human utterances in the collected dialogue episodes. Our experiments use the publicly released deployment data from BlenderBot (Xu et al., 2023). Human evaluation indicates improvements in our new models over baseline responses; however, we find that some proxy signals can lead to more generations with undesirable properties as well. For example, optimizing for conversation length can lead to more controversial or unfriendly generations compared to the baseline, whereas optimizing for positive sentiment or reaction can decrease these behaviors.
Extrapolative Controlled Sequence Generation via Iterative Refinement
Padmakumar, Vishakh, Pang, Richard Yuanzhe, He, He, Parikh, Ankur P.
We study the problem of extrapolative controlled generation, i.e., generating sequences with attribute values beyond the range seen in training. This task is of significant importance in automated design, especially drug discovery, where the goal is to design novel proteins that are \textit{better} (e.g., more stable) than existing sequences. Thus, by definition, the target sequences and their attribute values are out of the training distribution, posing challenges to existing methods that aim to directly generate the target sequence. Instead, in this work, we propose Iterative Controlled Extrapolation (ICE) which iteratively makes local edits to a sequence to enable extrapolation. We train the model on synthetically generated sequence pairs that demonstrate small improvement in the attribute value. Results on one natural language task (sentiment analysis) and two protein engineering tasks (ACE2 stability and AAV fitness) show that ICE considerably outperforms state-of-the-art approaches despite its simplicity. Our code and models are available at: https://github.com/vishakhpk/iter-extrapolation.