Goto

Collaborating Authors

 Pan, Yinghui


Active Legibility in Multiagent Reinforcement Learning

arXiv.org Artificial Intelligence

A multiagent sequential decision problem has been seen in many critical applications including urban transportation, autonomous driving cars, military operations, etc. Its widely known solution, namely multiagent reinforcement learning, has evolved tremendously in recent years. Among them, the solution paradigm of modeling other agents attracts our interest, which is different from traditional value decomposition or communication mechanisms. It enables agents to understand and anticipate others' behaviors and facilitates their collaboration. Inspired by recent research on the legibility that allows agents to reveal their intentions through their behavior, we propose a multiagent active legibility framework to improve their performance. The legibility-oriented framework allows agents to conduct legible actions so as to help others optimise their behaviors. In addition, we design a series of problem domains that emulate a common scenario and best characterize the legibility in multiagent reinforcement learning. The experimental results demonstrate that the new framework is more efficient and costs less training time compared to several multiagent reinforcement learning algorithms.


Variational Auto-encoder Based Solutions to Interactive Dynamic Influence Diagrams

arXiv.org Artificial Intelligence

Addressing multiagent decision problems in AI, especially those involving collaborative or competitive agents acting concurrently in a partially observable and stochastic environment, remains a formidable challenge. While Interactive Dynamic Influence Diagrams~(I-DIDs) have offered a promising decision framework for such problems, they encounter limitations when the subject agent encounters unknown behaviors exhibited by other agents that are not explicitly modeled within the I-DID. This can lead to sub-optimal responses from the subject agent. In this paper, we propose a novel data-driven approach that utilizes an encoder-decoder architecture, particularly a variational autoencoder, to enhance I-DID solutions. By integrating a perplexity-based tree loss function into the optimization algorithm of the variational autoencoder, coupled with the advantages of Zig-Zag One-Hot encoding and decoding, we generate potential behaviors of other agents within the I-DID that are more likely to contain their true behaviors, even from limited interactions. This new approach enables the subject agent to respond more appropriately to unknown behaviors, thus improving its decision quality. We empirically demonstrate the effectiveness of the proposed approach in two well-established problem domains, highlighting its potential for handling multi-agent decision problems with unknown behaviors. This work is the first time of using neural networks based approaches to deal with the I-DID challenge in agent planning and learning problems.


Inducing Individual Students' Learning Strategies through Homomorphic POMDPs

arXiv.org Artificial Intelligence

Optimizing students' learning strategies is a crucial component in intelligent tutoring systems. Previous research has demonstrated the effectiveness of devising personalized learning strategies for students by modelling their learning processes through partially observable Markov decision process (POMDP). However, the research holds the assumption that the student population adheres to a uniform cognitive pattern. While this assumption simplifies the POMDP modelling process, it evidently deviates from a real-world scenario, thus reducing the precision of inducing individual students' learning strategies. In this article, we propose the homomorphic POMDP (H-POMDP) model to accommodate multiple cognitive patterns and present the parameter learning approach to automatically construct the H-POMDP model. Based on the H-POMDP model, we are able to represent different cognitive patterns from the data and induce more personalized learning strategies for individual students. We conduct experiments to show that, in comparison to the general POMDP approach, the H-POMDP model demonstrates better precision when modelling mixed data from multiple cognitive patterns. Moreover, the learning strategies derived from H-POMDPs exhibit better personalization in the performance evaluation.


Utilizing Partial Policies for Identifying Equivalence of Behavioral Models

AAAI Conferences

We present a novel approach for identifying exact and approximate behavioral equivalence between models of agents. This is significant because both decision making and game play in multiagent settings must contend with behavioral models of other agents in order to predict their actions. One approach that reduces the complexity of the model space is to group models that are behaviorally equivalent. Identifying equivalence between models requires solving them and comparing entire policy trees. Because the trees grow exponentially with the horizon, our approach is to focus on partial policy trees for comparison and determining the distance between updated beliefs at the leaves of the trees. We propose a principled way to determine how much of the policy trees to consider, which trades off solution quality for efficiency. We investigate this approach in the context of the interactive dynamic influence diagram and evaluate its performance.