Goto

Collaborating Authors

 Pan, Yangchen


Memory-efficient Reinforcement Learning with Value-based Knowledge Consolidation

arXiv.org Artificial Intelligence

Artificial neural networks are promising for general function approximation but challenging to train on non-independent or non-identically distributed data due to catastrophic forgetting. The experience replay buffer, a standard component in deep reinforcement learning, is often used to reduce forgetting and improve sample efficiency by storing experiences in a large buffer and using them for training later. However, a large replay buffer results in a heavy memory burden, especially for onboard and edge devices with limited memory capacities. We propose memory-efficient reinforcement learning algorithms based on the deep Q-network algorithm to alleviate this problem. Our algorithms reduce forgetting and maintain high sample efficiency by consolidating knowledge from the target Q-network to the current Q-network. Compared to baseline methods, our algorithms achieve comparable or better performance in both feature-based and image-based tasks while easing the burden of large experience replay buffers.


Beyond Prioritized Replay: Sampling States in Model-Based RL via Simulated Priorities

arXiv.org Artificial Intelligence

Model-based reinforcement learning (MBRL) can significantly improve sample efficiency, particularly when carefully choosing the states from which to sample hypothetical transitions. Such prioritization has been empirically shown to be useful for both experience replay (ER) and Dyna-style planning. However, there is as yet little theoretical understanding in RL about such prioritization strategies, and why they help. In this work, we revisit prioritized ER and, in an ideal setting, show an equivalence to minimizing cubic loss, providing theoretical insight into why it improves upon uniform sampling. This ideal setting, however, cannot be realized in practice, due to insufficient coverage of the sample space and outdated priorities of training samples. This motivates our model-based approach, which does not suffer from these limitations. Our key idea is to actively search for high priority states using gradient ascent. Under certain conditions, we prove that the distribution of hypothetical experiences generated from these states provides a diverse set of states, sampled proportionally to approximately true priorities. Our experiments on both benchmark and application-oriented domain show that our approach achieves superior performance over both the model-free prioritized ER method and several closely related model-based baselines.


Hill Climbing on Value Estimates for Search-control in Dyna

arXiv.org Artificial Intelligence

Dyna is an architecture for model-based reinforcement learning (RL), where simulated experience from a model is used to update policies or value functions. A key component of Dyna is search-control, the mechanism to generate the state and action from which the agent queries the model, which remains largely unexplored. In this work, we propose to generate such states by using the trajectory obtained from Hill Climbing (HC) the current estimate of the value function. This has the effect of propagating value from high-value regions and of preemptively updating value estimates of the regions that the agent is likely to visit next. We derive a noisy stochastic projected gradient ascent algorithm for hill climbing, and highlight a connection to Langevin dynamics. We provide an empirical demonstration on four classical domains that our algorithm, HC-Dyna, can obtain significant sample efficiency improvements. We study the properties of different sampling distributions for search-control, and find that there appears to be a benefit specifically from using the samples generated by climbing on current value estimates from low-value to high-value region.


Actor-Expert: A Framework for using Action-Value Methods in Continuous Action Spaces

arXiv.org Artificial Intelligence

Value-based approaches can be difficult to use in continuous action spaces, because an optimization has to be solved to find the greedy action for the action-values. A common strategy has been to restrict the functional form of the action-values to be convex or quadratic in the actions, to simplify this optimization. Such restrictions, however, can prevent learning accurate action-values. In this work, we propose the Actor-Expert framework for value-based methods, that decouples action-selection (Actor) from the action-value representation (Expert). The Expert uses Q-learning to update the action-values towards the optimal action-values, whereas the Actor (learns to) output the greedy action for the current action-values. We develop a Conditional Cross Entropy Method for the Actor, to learn the greedy action for a generically parameterized Expert, and provide a two-timescale analysis to validate asymptotic behavior. We demonstrate in a toy domain with bimodal action-values that previous restrictive action-value methods fail whereas the decoupled Actor-Expert with a more general action-value parameterization succeeds. Finally, we demonstrate that Actor-Expert performs as well as or better than these other methods on several benchmark continuous-action domains.


Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control

arXiv.org Artificial Intelligence

Recent work has shown that reinforcement learning (RL) is a promising approach to control dynamical systems described by partial differential equations (PDE). This paper shows how to use RL to tackle more general PDE control problems that have continuous high-dimensional action spaces with spatial relationship among action dimensions. In particular, we propose the concept of action descriptors, which encode regularities among spatially-extended action dimensions and enable the agent to control high-dimensional action PDEs. We provide theoretical evidence suggesting that this approach can be more sample efficient compared to a conventional approach that treats each action dimension separately and does not explicitly exploit the spatial regularity of the action space. The action descriptor approach is then used within the deep deterministic policy gradient algorithm. Experiments on two PDE control problems, with up to 256-dimensional continuous actions, show the advantage of the proposed approach over the conventional one.


Organizing Experience: A Deeper Look at Replay Mechanisms for Sample-based Planning in Continuous State Domains

arXiv.org Artificial Intelligence

Model-based strategies for control are critical to obtain sample efficient learning. Dyna is a planning paradigm that naturally interleaves learning and planning, by simulating one-step experience to update the action-value function. This elegant planning strategy has been mostly explored in the tabular setting. The aim of this paper is to revisit sample-based planning, in stochastic and continuous domains with learned models. We first highlight the flexibility afforded by a model over Experience Replay (ER). Replay-based methods can be seen as stochastic planning methods that repeatedly sample from a buffer of recent agent-environment interactions and perform updates to improve data efficiency. We show that a model, as opposed to a replay buffer, is particularly useful for specifying which states to sample from during planning, such as predecessor states that propagate information in reverse from a state more quickly. We introduce a semi-parametric model learning approach, called Reweighted Experience Models (REMs), that makes it simple to sample next states or predecessors. We demonstrate that REM-Dyna exhibits similar advantages over replay-based methods in learning in continuous state problems, and that the performance gap grows when moving to stochastic domains, of increasing size.


Accelerated Gradient Temporal Difference Learning

arXiv.org Artificial Intelligence

The family of temporal difference (TD) methods span a spectrum from computationally frugal linear methods like TD({\lambda}) to data efficient least squares methods. Least square methods make the best use of available data directly computing the TD solution and thus do not require tuning a typically highly sensitive learning rate parameter, but require quadratic computation and storage. Recent algorithmic developments have yielded several sub-quadratic methods that use an approximation to the least squares TD solution, but incur bias. In this paper, we propose a new family of accelerated gradient TD (ATD) methods that (1) provide similar data efficiency benefits to least-squares methods, at a fraction of the computation and storage (2) significantly reduce parameter sensitivity compared to linear TD methods, and (3) are asymptotically unbiased. We illustrate these claims with a proof of convergence in expectation and experiments on several benchmark domains and a large-scale industrial energy allocation domain.


Accelerated Gradient Temporal Difference Learning

AAAI Conferences

The family of temporal difference (TD) methods span a spectrum from computationally frugal linear methods like TD(λ) to data efficient least squares methods. Least square methods make the best use of available data directly computing the TD solution and thus do not require tuning a typically highly sensitive learning rate parameter, but require quadratic computation and storage. Recent algorithmic developments have yielded several sub-quadratic methods that use an approximation to the least squares TD solution, but incur bias. In this paper, we propose a new family of accelerated gradient TD (ATD) methods that (1) provide similar data efficiency benefits to least-squares methods, at a fraction of the computation and storage (2) significantly reduce parameter sensitivity compared to linear TD methods, and (3) are asymptotically unbiased. We illustrate these claims with a proof of convergence in expectation and experiments on several benchmark domains and a large-scale industrial energy allocation domain.