Pan, Tong
STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting
Wang, Hongjun, Chen, Jiyuan, Pan, Tong, Dong, Zheng, Zhang, Lingyu, Jiang, Renhe, Song, Xuan
Traffic forecasting is a cornerstone of smart city management, enabling efficient resource allocation and transportation planning. Deep learning, with its ability to capture complex nonlinear patterns in spatiotemporal (ST) data, has emerged as a powerful tool for traffic forecasting. While graph neural networks (GCNs) and transformer-based models have shown promise, their computational demands often hinder their application to real-world road networks, particularly those with large-scale spatiotemporal interactions. To address these challenges, we propose a novel spatiotemporal graph transformer (STGformer) architecture. STGformer effectively balances the strengths of GCNs and Transformers, enabling efficient modeling of both global and local traffic patterns while maintaining a manageable computational footprint. Unlike traditional approaches that require multiple attention layers, STG attention block captures high-order spatiotemporal interactions in a single layer, significantly reducing computational cost. In particular, STGformer achieves a 100x speedup and a 99.8\% reduction in GPU memory usage compared to STAEformer during batch inference on a California road graph with 8,600 sensors. We evaluate STGformer on the LargeST benchmark and demonstrate its superiority over state-of-the-art Transformer-based methods such as PDFormer and STAEformer, which underline STGformer's potential to revolutionize traffic forecasting by overcoming the computational and memory limitations of existing approaches, making it a promising foundation for future spatiotemporal modeling tasks.
Evaluating the Generalization Ability of Spatiotemporal Model in Urban Scenario
Wang, Hongjun, Chen, Jiyuan, Pan, Tong, Dong, Zheng, Zhang, Lingyu, Jiang, Renhe, Song, Xuan
Spatiotemporal neural networks have shown great promise in urban scenarios by effectively capturing temporal and spatial correlations. However, urban environments are constantly evolving, and current model evaluations are often limited to traffic scenarios and use data mainly collected only a few weeks after training period to evaluate model performance. The generalization ability of these models remains largely unexplored. To address this, we propose a Spatiotemporal Out-of-Distribution (ST-OOD) benchmark, which comprises six urban scenario: bike-sharing, 311 services, pedestrian counts, traffic speed, traffic flow, ride-hailing demand, and bike-sharing, each with in-distribution (same year) and out-of-distribution (next years) settings. We extensively evaluate state-of-the-art spatiotemporal models and find that their performance degrades significantly in out-of-distribution settings, with most models performing even worse than a simple Multi-Layer Perceptron (MLP). Our findings suggest that current leading methods tend to over-rely on parameters to overfit training data, which may lead to good performance on in-distribution data but often results in poor generalization. We also investigated whether dropout could mitigate the negative effects of overfitting. Our results showed that a slight dropout rate could significantly improve generalization performance on most datasets, with minimal impact on in-distribution performance. However, balancing in-distribution and out-of-distribution performance remains a challenging problem. We hope that the proposed benchmark will encourage further research on this critical issue.
Robust Traffic Forecasting against Spatial Shift over Years
Wang, Hongjun, Chen, Jiyuan, Pan, Tong, Dong, Zheng, Zhang, Lingyu, Jiang, Renhe, Song, Xuan
Recent advancements in Spatiotemporal Graph Neural Networks (ST-GNNs) and Transformers have demonstrated promising potential for traffic forecasting by effectively capturing both temporal and spatial correlations. The generalization ability of spatiotemporal models has received considerable attention in recent scholarly discourse. However, no substantive datasets specifically addressing traffic out-of-distribution (OOD) scenarios have been proposed. Existing ST-OOD methods are either constrained to testing on extant data or necessitate manual modifications to the dataset. Consequently, the generalization capacity of current spatiotemporal models in OOD scenarios remains largely underexplored. In this paper, we investigate state-of-the-art models using newly proposed traffic OOD benchmarks and, surprisingly, find that these models experience a significant decline in performance. Through meticulous analysis, we attribute this decline to the models' inability to adapt to previously unobserved spatial relationships. To address this challenge, we propose a novel Mixture of Experts (MoE) framework, which learns a set of graph generators (i.e., graphons) during training and adaptively combines them to generate new graphs based on novel environmental conditions to handle spatial distribution shifts during testing. We further extend this concept to the Transformer architecture, achieving substantial improvements. Our method is both parsimonious and efficacious, and can be seamlessly integrated into any spatiotemporal model, outperforming current state-of-the-art approaches in addressing spatial dynamics.
CoPRA: Bridging Cross-domain Pretrained Sequence Models with Complex Structures for Protein-RNA Binding Affinity Prediction
Han, Rong, Liu, Xiaohong, Pan, Tong, Xu, Jing, Wang, Xiaoyu, Lan, Wuyang, Li, Zhenyu, Wang, Zixuan, Song, Jiangning, Wang, Guangyu, Chen, Ting
Accurately measuring protein-RNA binding affinity is crucial in many biological processes and drug design. Previous computational methods for protein-RNA binding affinity prediction rely on either sequence or structure features, unable to capture the binding mechanisms comprehensively. The recent emerging pre-trained language models trained on massive unsupervised sequences of protein and RNA have shown strong representation ability for various in-domain downstream tasks, including binding site prediction. However, applying different-domain language models collaboratively for complex-level tasks remains unexplored. In this paper, we propose CoPRA to bridge pre-trained language models from different biological domains via Complex structure for Protein-RNA binding Affinity prediction. We demonstrate for the first time that cross-biological modal language models can collaborate to improve binding affinity prediction. We propose a Co-Former to combine the cross-modal sequence and structure information and a bi-scope pre-training strategy for improving Co-Former's interaction understanding. Meanwhile, we build the largest protein-RNA binding affinity dataset PRA310 for performance evaluation. We also test our model on a public dataset for mutation effect prediction. CoPRA reaches state-of-the-art performance on all the datasets. We provide extensive analyses and verify that CoPRA can (1) accurately predict the protein-RNA binding affinity; (2) understand the binding affinity change caused by mutations; and (3) benefit from scaling data and model size.
Easy Begun is Half Done: Spatial-Temporal Graph Modeling with ST-Curriculum Dropout
Wang, Hongjun, Chen, Jiyuan, Pan, Tong, Fan, Zipei, Zhang, Boyuan, Jiang, Renhe, Zhang, Lingyu, Xie, Yi, Wang, Zhongyi, Song, Xuan
Spatial-temporal (ST) graph modeling, such as traffic speed forecasting and taxi demand prediction, is an important task in deep learning area. However, for the nodes in graph, their ST patterns can vary greatly in difficulties for modeling, owning to the heterogeneous nature of ST data. We argue that unveiling the nodes to the model in a meaningful order, from easy to complex, can provide performance improvements over traditional training procedure. The idea has its root in Curriculum Learning which suggests in the early stage of training models can be sensitive to noise and difficult samples. In this paper, we propose ST-Curriculum Dropout, a novel and easy-to-implement strategy for spatial-temporal graph modeling. Specifically, we evaluate the learning difficulty of each node in high-level feature space and drop those difficult ones out to ensure the model only needs to handle fundamental ST relations at the beginning, before gradually moving to hard ones. Our strategy can be applied to any canonical deep learning architecture without extra trainable parameters, and extensive experiments on a wide range of datasets are conducted to illustrate that, by controlling the difficulty level of ST relations as the training progresses, the model is able to capture better representation of the data and thus yields better generalization.