Goto

Collaborating Authors

 Pan, Jie


Machine learning for modelling unstructured grid data in computational physics: a review

arXiv.org Artificial Intelligence

Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) techniques. This paper provides a comprehensive review of advanced ML methodologies designed to handle unstructured grid data in high-dimensional dynamical systems. Key approaches discussed include graph neural networks, transformer models with spatial attention mechanisms, interpolation-integrated ML methods, and meshless techniques such as physics-informed neural networks. These methodologies have proven effective across diverse fields, including fluid dynamics and environmental simulations. This review is intended as a guidebook for computational scientists seeking to apply ML approaches to unstructured grid data in their domains, as well as for ML researchers looking to address challenges in computational physics. It places special focus on how ML methods can overcome the inherent limitations of traditional numerical techniques and, conversely, how insights from computational physics can inform ML development. To support benchmarking, this review also provides a summary of open-access datasets of unstructured grid data in computational physics. Finally, emerging directions such as generative models with unstructured data, reinforcement learning for mesh generation, and hybrid physics-data-driven paradigms are discussed to inspire future advancements in this evolving field.


Graph Structure Learning for Tumor Microenvironment with Cell Type Annotation from non-spatial scRNA-seq data

arXiv.org Artificial Intelligence

The exploration of cellular heterogeneity within the tumor microenvironment (TME) via single-cell RNA sequencing (scRNA-seq) is essential for understanding cancer progression and response to therapy. Current scRNA-seq approaches, however, lack spatial context and rely on incomplete datasets of ligand-receptor interactions (LRIs), limiting accurate cell type annotation and cell-cell communication (CCC) inference. This study addresses these challenges using a novel graph neural network (GNN) model that enhances cell type prediction and cell interaction analysis. Our study utilized a dataset consisting of 49,020 cells from 19 patients across three cancer types: Leukemia, Breast Invasive Carcinoma, and Colorectal Cancer. The proposed scGSL model demonstrated robust performance, achieving an average accuracy of 84.83%, precision of 86.23%, recall of 81.51%, and an F1 score of 80.92% across all datasets. These metrics represent a significant enhancement over existing methods, which typically exhibit lower performance metrics. Additionally, by reviewing existing literature on gene interactions within the TME, the scGSL model proves to robustly identify biologically meaningful gene interactions in an unsupervised manner, validated by significant expression differences in key gene pairs across various cancers. The source code and data used in this paper can be found in https://github.com/LiYuechao1998/scGSL.


Reinforcement learning for automatic quadrilateral mesh generation: a soft actor-critic approach

arXiv.org Artificial Intelligence

This paper proposes, implements, and evaluates a reinforcement learning (RL)-based computational framework for automatic mesh generation. Mesh generation plays a fundamental role in numerical simulations in the area of computer aided design and engineering (CAD/E). It is identified as one of the critical issues in the NASA CFD Vision 2030 Study. Existing mesh generation methods suffer from high computational complexity, low mesh quality in complex geometries, and speed limitations. These methods and tools, including commercial software packages, are typically semiautomatic and they need inputs or help from human experts. By formulating the mesh generation as a Markov decision process (MDP) problem, we are able to use a state-of-the-art reinforcement learning (RL) algorithm called "soft actor-critic" to automatically learn from trials the policy of actions for mesh generation. The implementation of this RL algorithm for mesh generation allows us to build a fully automatic mesh generation system without human intervention and any extra clean-up operations, which fills the gap in the existing mesh generation tools. In the experiments to compare with two representative commercial software packages, our system demonstrates promising performance with respect to scalability, generalizability, and effectiveness.