Goto

Collaborating Authors

 Padmakumar, Vishakh


Extrapolative Controlled Sequence Generation via Iterative Refinement

arXiv.org Artificial Intelligence

We study the problem of extrapolative controlled generation, i.e., generating sequences with attribute values beyond the range seen in training. This task is of significant importance in automated design, especially drug discovery, where the goal is to design novel proteins that are \textit{better} (e.g., more stable) than existing sequences. Thus, by definition, the target sequences and their attribute values are out of the training distribution, posing challenges to existing methods that aim to directly generate the target sequence. Instead, in this work, we propose Iterative Controlled Extrapolation (ICE) which iteratively makes local edits to a sequence to enable extrapolation. We train the model on synthetically generated sequence pairs that demonstrate small improvement in the attribute value. Results on one natural language task (sentiment analysis) and two protein engineering tasks (ACE2 stability and AAV fitness) show that ICE considerably outperforms state-of-the-art approaches despite its simplicity. Our code and models are available at: https://github.com/vishakhpk/iter-extrapolation.


Reward Gaming in Conditional Text Generation

arXiv.org Artificial Intelligence

To align conditional text generation model outputs with desired behaviors, there has been an increasing focus on training the model using reinforcement learning (RL) with reward functions learned from human annotations. Under this framework, we identify three common cases where high rewards are incorrectly assigned to undesirable patterns: noise-induced spurious correlation, naturally occurring spurious correlation, and covariate shift. We show that even though learned metrics achieve high performance on the distribution of the data used to train the reward function, the undesirable patterns may be amplified during RL training of the text generation model. While there has been discussion about reward gaming in the RL or safety community, in this discussion piece, we would like to highlight reward gaming in the natural language generation (NLG) community using concrete conditional text generation examples and discuss potential fixes and areas for future work.


Two-Turn Debate Doesn't Help Humans Answer Hard Reading Comprehension Questions

arXiv.org Artificial Intelligence

The use of language-model-based question-answering systems to aid humans in completing difficult tasks is limited, in part, by the unreliability of the text these systems generate. Using hard multiple-choice reading comprehension questions as a testbed, we assess whether presenting humans with arguments for two competing answer options, where one is correct and the other is incorrect, allows human judges to perform more accurately, even when one of the arguments is unreliable and deceptive. If this is helpful, we may be able to increase our justified trust in language-model-based systems by asking them to produce these arguments where needed. Previous research has shown that just a single turn of arguments in this format is not helpful to humans. However, as debate settings are characterized by a back-and-forth dialogue, we follow up on previous results to test whether adding a second round of counter-arguments is helpful to humans. We find that, regardless of whether they have access to arguments or not, humans perform similarly on our task. These findings suggest that, in the case of answering reading comprehension questions, debate is not a helpful format.