Přeučil, Libor
Multi-Platform Teach-and-Repeat Navigation by Visual Place Recognition Based on Deep-Learned Local Features
Truhlařík, Václav, Pivoňka, Tomáš, Kasarda, Michal, Přeučil, Libor
Uniform and variable environments still remain a challenge for stable visual localization and mapping in mobile robot navigation. One of the possible approaches suitable for such environments is appearance-based teach-and-repeat navigation, relying on simplified localization and reactive robot motion control - all without a need for standard mapping. This work brings an innovative solution to such a system based on visual place recognition techniques. Here, the major contributions stand in the employment of a new visual place recognition technique, a novel horizontal shift computation approach, and a multi-platform system design for applications across various types of mobile robots. Secondly, a new public dataset for experimental testing of appearance-based navigation methods is introduced. Moreover, the work also provides real-world experimental testing and performance comparison of the introduced navigation system against other state-of-the-art methods. The results confirm that the new system outperforms existing methods in several testing scenarios, is capable of operation indoors and outdoors, and exhibits robustness to day and night scene variations.
Visual Localization via Semantic Structures in Autonomous Photovoltaic Power Plant Inspection
Kozák, Viktor, Košnar, Karel, Chudoba, Jan, Kulich, Miroslav, Přeučil, Libor
Inspection systems utilizing unmanned aerial vehicles (UAVs) equipped with thermal cameras are increasingly popular for the maintenance of photovoltaic (PV) power plants. However, automation of the inspection task is a challenging problem as it requires precise navigation to capture images from optimal distances and viewing angles. This paper presents a novel localization pipeline that directly integrates PV module detection with UAV navigation, allowing precise positioning during inspection. Detections are used to identify the power plant structures in the image and associate these with the power plant model. We define visually recognizable anchor points for the initial association and use object tracking to discern global associations. We present three distinct methods for visual segmentation of PV modules based on traditional computer vision, deep learning, and their fusion, and we evaluate their performance in relation to the proposed localization pipeline. The presented methods were verified and evaluated using custom aerial inspection data sets, demonstrating their robustness and applicability for real-time navigation. Additionally, we evaluate the influence of the power plant model's precision on the localization methods.
On Model-Free Re-ranking for Visual Place Recognition with Deep Learned Local Features
Pivoňka, Tomáš, Přeučil, Libor
Re-ranking is the second stage of a visual place recognition task, in which the system chooses the best-matching images from a pre-selected subset of candidates. Model-free approaches compute the image pair similarity based on a spatial comparison of corresponding local visual features, eliminating the need for computationally expensive estimation of a model describing transformation between images. The article focuses on model-free re-ranking based on standard local visual features and their applicability in long-term autonomy systems. It introduces three new model-free re-ranking methods that were designed primarily for deep-learned local visual features. These features evince high robustness to various appearance changes, which stands as a crucial property for use with long-term autonomy systems. All the introduced methods were employed in a new visual place recognition system together with the D2-net feature detector (Dusmanu, 2019) and experimentally tested with diverse, challenging public datasets. The obtained results are on par with current state-of-the-art methods, affirming that model-free approaches are a viable and worthwhile path for long-term visual place recognition.
T\v{r}iVis: Versatile, Reliable, and High-Performance Tool for Computing Visibility in Polygonal Environments
Mikula, Jan, Kulich, Miroslav, Přeučil, Libor
Visibility is a fundamental concept in computational geometry, with numerous applications in surveillance, robotics, and games. This software paper presents T\v{r}iVis, a C++ library developed by the authors for computing numerous visibility-related queries in highly complex polygonal environments. Adapting the triangular expansion algorithm, T\v{r}iVis stands out as a versatile, high-performance, more reliable and easy-to-use alternative to current solutions that is also free of heavy dependencies. Through evaluation on a challenging dataset, T\v{r}iVis has been benchmarked against existing visibility libraries. The results demonstrate that T\v{r}iVis outperforms the competing solutions by at least an order of magnitude in query times, while exhibiting more reliable runtime behavior. T\v{r}iVis is freely available for private, research, and institutional use at https://github.com/janmikulacz/trivis.