Goto

Collaborating Authors

 Pütz, Sebastian


Probabilistic Forecasting of Day-Ahead Electricity Prices and their Volatility with LSTMs

arXiv.org Artificial Intelligence

Accurate forecasts of electricity prices are crucial for the management of electric power systems and the development of smart applications. European electricity prices have risen substantially and became highly volatile after the Russian invasion of Ukraine, challenging established forecasting methods. Here, we present a Long Short-Term Memory (LSTM) model for the German-Luxembourg day-ahead electricity prices addressing these challenges. The recurrent structure of the LSTM allows the model to adapt to trends, while the joint prediction of both mean and standard deviation enables a probabilistic prediction. Using a physics-inspired approach - superstatistics - to derive an explanation for the statistics of prices, we show that the LSTM model faithfully reproduces both prices and their volatility.


MICP-L: Mesh-based ICP for Robot Localization using Hardware-Accelerated Ray Casting

arXiv.org Artificial Intelligence

Abstract-- Triangle mesh maps have proven to be a versatile 3D environment representation for robots to navigate in challenging indoor and outdoor environments exhibiting tunnels, hills and varying slopes. To make use of these mesh maps, methods are needed that allow robots to accurately localize themselves to perform typical tasks like path planning and navigation. We accelerate the computation of ray casting correspondences (RCC) between range sensors and mesh maps by supporting different parallel computing devices like multicore CPUs, GPUs and the latest NVIDIA RTX hardware. By additionally transforming the covariance computation into a reduction operation, we can optimize the initial guessed poses in parallel on CPUs or GPUs, making our implementation applicable in real-time on a variety Figure 1: The Lero agricultural monitoring robot uses MICP-L for of target architectures. We demonstrate the robustness of our localization during mesh-based navigation between beds in a market localization approach with datasets from agriculture, drones, garden micro-farming environment. It is designed to be Localization is the task of estimating the state of a applicable to robots with varying computational capabilities.


Identifying drivers and mitigators for congestion and redispatch in the German electric power system with explainable AI

arXiv.org Artificial Intelligence

The transition to a sustainable energy supply challenges the operation of electric power systems in manifold ways. Transmission grid loads increase as wind and solar power are often installed far away from the consumers. In extreme cases, system operators must intervene via countertrading or redispatch to ensure grid stability. In this article, we provide a data-driven analysis of congestion in the German transmission grid. We develop an explainable machine learning model to predict the volume of redispatch and countertrade on an hourly basis. The model reveals factors that drive or mitigate grid congestion and quantifies their impact. We show that, as expected, wind power generation is the main driver, but hydropower and cross-border electricity trading also play an essential role. Solar power, on the other hand, has no mitigating effect. Our results suggest that a change to the market design would alleviate congestion.


Revealing interactions between HVDC cross-area flows and frequency stability with explainable AI

arXiv.org Artificial Intelligence

The energy transition introduces more volatile energy sources into the power grids. In this context, power transfer between different synchronous areas through High Voltage Direct Current (HVDC) links becomes increasingly important. Such links can balance volatile generation by enabling long-distance transport or by leveraging their fast control behavior. Here, we investigate the interaction of power imbalances - represented through the power grid frequency - and power flows on HVDC links between synchronous areas in Europe. We use explainable machine learning to identify key dependencies and disentangle the interaction of critical features. Our results show that market-based HVDC flows introduce deterministic frequency deviations, which however can be mitigated through strict ramping limits. Moreover, varying HVDC operation modes strongly affect the interaction with the grid. In particular, we show that load-frequency control via HVDC links can both have control-like or disturbance-like impacts on frequency stability.