Goto

Collaborating Authors

Ouziri, Mourad


Cleaning Inconsistent Data in Temporal DL-Lite Under Best Repair Semantics

arXiv.org Artificial Intelligence

In this paper, we address the problem of handling inconsistent data in Temporal Description Logic (TDL) knowledge bases. Considering the data part of the knowledge base as the source of inconsistency over time, we propose an ABox repair approach. This is the first work handling the repair in TDL Knowledge bases. To do so, our goal is twofold: 1) detect temporal inconsistencies and 2) propose a data temporal reparation. For the inconsistency detection, we propose a reduction approach from TDL to DL which allows to provide a tight NP-complete upper bound for TDL concept satisfiability and to use highly optimised DL reasoners that can bring precise explanation (the set of inconsistent data assertions). Thereafter, from the obtained explanation, we propose a method for automatically computing the best repair in the temporal setting based on the allowed rigid predicates and the time order of assertions.


SentiQ: A Probabilistic Logic Approach to Enhance Sentiment Analysis Tool Quality

arXiv.org Artificial Intelligence

The opinion expressed in various Web sites and social-media is an essential contributor to the decision making process of several organizations. Existing sentiment analysis tools aim to extract the polarity (i.e., positive, negative, neutral) from these opinionated contents. Despite the advance of the research in the field, sentiment analysis tools give \textit{inconsistent} polarities, which is harmful to business decisions. In this paper, we propose SentiQ, an unsupervised Markov logic Network-based approach that injects the semantic dimension in the tools through rules. It allows to detect and solve inconsistencies and then improves the overall accuracy of the tools. Preliminary experimental results demonstrate the usefulness of SentiQ.