Ooi, Jayden
Finding Fast Transformers: One-Shot Neural Architecture Search by Component Composition
Tsai, Henry, Ooi, Jayden, Ferng, Chun-Sung, Chung, Hyung Won, Riesa, Jason
Transformer-based models have achieved stateof-the-art results in many tasks in natural language processing. However, such models are usually slow at inference time, making deployment difficult. In this paper, we develop an efficient algorithm to search for fast models while maintaining model quality. We describe a novel approach to decompose the Transformer architecture into smaller components, and propose a sampling-based one-shot architecture search method to find an optimal model for inference. The model search process is more efficient than alternatives, adding only a small overhead to training time. By applying our methods to BERT-base architectures, we achieve 10% to 30% speedup for pre-trained BERT and 70% speedup on top of a previous state-of-the-art distilled BERT model on Cloud TPU-v2 with a generally acceptable drop in performance.
Data Efficient Training for Reinforcement Learning with Adaptive Behavior Policy Sharing
Liu, Ge, Wu, Rui, Cheng, Heng-Tze, Wang, Jing, Ooi, Jayden, Li, Lihong, Li, Ang, Li, Wai Lok Sibon, Boutilier, Craig, Chi, Ed
Deep Reinforcement Learning (RL) is proven powerful for decision making in simulated environments. However, training deep RL model is challenging in real world applications such as production-scale health-care or recommender systems because of the expensiveness of interaction and limitation of budget at deployment. One aspect of the data inefficiency comes from the expensive hyper-parameter tuning when optimizing deep neural networks. We propose Adaptive Behavior Policy Sharing (ABPS), a data-efficient training algorithm that allows sharing of experience collected by behavior policy that is adaptively selected from a pool of agents trained with an ensemble of hyper-parameters. We further extend ABPS to evolve hyper-parameters during training by hybridizing ABPS with an adapted version of Population Based Training (ABPS-PBT). We conduct experiments with multiple Atari games with up to 16 hyper-parameter/architecture setups. ABPS achieves superior overall performance, reduced variance on top 25% agents, and equivalent performance on the best agent compared to conventional hyper-parameter tuning with independent training, even though ABPS only requires the same number of environmental interactions as training a single agent. We also show that ABPS-PBT further improves the convergence speed and reduces the variance.
Advantage Amplification in Slowly Evolving Latent-State Environments
Mladenov, Martin, Meshi, Ofer, Ooi, Jayden, Schuurmans, Dale, Boutilier, Craig
Latent-state environments with long horizons, such as those faced by recommender systems, pose significant challenges for reinforcement learning (RL). In this work, we identify and analyze several key hurdles for RL in such environments, including belief state error and small action advantage. We develop a general principle of advantage amplification that can overcome these hurdles through the use of temporal abstraction. We propose several aggregation methods and prove they induce amplification in certain settings. We also bound the loss in optimality incurred by our methods in environments where latent state evolves slowly and demonstrate their performance empirically in a stylized user-modeling task.