Ong, Yew-Soon
($\boldsymbol{\theta}_l, \boldsymbol{\theta}_u$)-Parametric Multi-Task Optimization: Joint Search in Solution and Infinite Task Spaces
Wei, Tingyang, Liu, Jiao, Gupta, Abhishek, Tan, Puay Siew, Ong, Yew-Soon
Multi-task optimization is typically characterized by a fixed and finite set of optimization tasks. The present paper relaxes this condition by considering a non-fixed and potentially infinite set of optimization tasks defined in a parameterized, continuous and bounded task space. We refer to this unique problem setting as parametric multi-task optimization (PMTO). Assuming the bounds of the task parameters to be ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$), a novel ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$)-PMTO algorithm is crafted to enable joint search over tasks and their solutions. This joint search is supported by two approximation models: (1) for mapping solutions to the objective spaces of all tasks, which provably accelerates convergence by acting as a conduit for inter-task knowledge transfers, and (2) for probabilistically mapping tasks to the solution space, which facilitates evolutionary exploration of under-explored regions of the task space. At the end of a full ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$)-PMTO run, the acquired models enable rapid identification of optimized solutions for any task lying within the specified bounds. This outcome is validated on both synthetic test problems and practical case studies, with the significant real-world applicability of PMTO shown towards fast reconfiguration of robot controllers under changing task conditions. The potential of PMTO to vastly speedup the search for solutions to minimax optimization problems is also demonstrated through an example in robust engineering design.
Mastering Continual Reinforcement Learning through Fine-Grained Sparse Network Allocation and Dormant Neuron Exploration
Zheng, Chengqi, Yin, Haiyan, Chen, Jianda, Ng, Terence, Ong, Yew-Soon, Tsang, Ivor
Continual Reinforcement Learning (CRL) is essential for developing agents that can learn, adapt, and accumulate knowledge over time. However, a fundamental challenge persists as agents must strike a delicate balance between plasticity, which enables rapid skill acquisition, and stability, which ensures long-term knowledge retention while preventing catastrophic forgetting. In this paper, we introduce SSDE, a novel structure-based approach that enhances plasticity through a fine-grained allocation strategy with Structured Sparsity and Dormant-guided Exploration. SSDE decomposes the parameter space into forward-transfer (frozen) parameters and task-specific (trainable) parameters. Crucially, these parameters are allocated by an efficient co-allocation scheme under sparse coding, ensuring sufficient trainable capacity for new tasks while promoting efficient forward transfer through frozen parameters. However, structure-based methods often suffer from rigidity due to the accumulation of non-trainable parameters, limiting exploration and adaptability. To address this, we further introduce a sensitivity-guided neuron reactivation mechanism that systematically identifies and resets dormant neurons, which exhibit minimal influence in the sparse policy network during inference. This approach effectively enhance exploration while preserving structural efficiency. Extensive experiments on the CW10-v1 Continual World benchmark demonstrate that SSDE achieves state-of-the-art performance, reaching a success rate of 95%, surpassing prior methods significantly in both plasticity and stability trade-offs (code is available at: https://github.com/chengqiArchy/SSDE).
Uncertain Multi-Objective Recommendation via Orthogonal Meta-Learning Enhanced Bayesian Optimization
Wang, Hongxu, Sun, Zhu, Du, Yingpeng, Zhang, Lu, He, Tiantian, Ong, Yew-Soon
Recommender systems (RSs) play a crucial role in shaping our digital interactions, influencing how we access and engage with information across various domains. Traditional research has predominantly centered on maximizing recommendation accuracy, often leading to unintended side effects such as echo chambers and constrained user experiences. Drawing inspiration from autonomous driving, we introduce a novel framework that categorizes RS autonomy into five distinct levels, ranging from basic rule-based accuracy-driven systems to behavior-aware, uncertain multi-objective RSs - where users may have varying needs, such as accuracy, diversity, and fairness. In response, we propose an approach that dynamically identifies and optimizes multiple objectives based on individual user preferences, fostering more ethical and intelligent user-centric recommendations. To navigate the uncertainty inherent in multi-objective RSs, we develop a Bayesian optimization (BO) framework that captures personalized trade-offs between different objectives while accounting for their uncertain interdependencies. Furthermore, we introduce an orthogonal meta-learning paradigm to enhance BO efficiency and effectiveness by leveraging shared knowledge across similar tasks and mitigating conflicts among objectives through the discovery of orthogonal information. Finally, extensive empirical evaluations demonstrate the effectiveness of our method in optimizing uncertain multi-objectives for individual users, paving the way for more adaptive and user-focused RSs.
Fast Direct: Query-Efficient Online Black-box Guidance for Diffusion-model Target Generation
Tan, Kim Yong, Lyu, Yueming, Tsang, Ivor, Ong, Yew-Soon
Guided diffusion-model generation is a promising direction for customizing the generation process of a pre-trained diffusion-model to address the specific downstream tasks. Existing guided diffusion models either rely on training of the guidance model with pre-collected datasets or require the objective functions to be differentiable. However, for most real-world tasks, the offline datasets are often unavailable, and their objective functions are often not differentiable, such as image generation with human preferences, molecular generation for drug discovery, and material design. Thus, we need an $\textbf{online}$ algorithm capable of collecting data during runtime and supporting a $\textbf{black-box}$ objective function. Moreover, the $\textbf{query efficiency}$ of the algorithm is also critical because the objective evaluation of the query is often expensive in the real-world scenarios. In this work, we propose a novel and simple algorithm, $\textbf{Fast Direct}$, for query-efficient online black-box target generation. Our Fast Direct builds a pseudo-target on the data manifold to update the noise sequence of the diffusion model with a universal direction, which is promising to perform query-efficient guided generation. Extensive experiments on twelve high-resolution ($\small {1024 \times 1024}$) image target generation tasks and six 3D-molecule target generation tasks show $\textbf{6}\times$ up to $\textbf{10}\times$ query efficiency improvement and $\textbf{11}\times$ up to $\textbf{44}\times$ query efficiency improvement, respectively. Our implementation is publicly available at: https://github.com/kimyong95/guide-stable-diffusion/tree/fast-direct
Co-Learning Bayesian Optimization
Guo, Zhendong, Ong, Yew-Soon, He, Tiantian, Liu, Haitao
Bayesian optimization (BO) is well known to be sample-efficient for solving black-box problems. However, the BO algorithms can sometimes get stuck in suboptimal solutions even with plenty of samples. Intrinsically, such suboptimal problem of BO can attribute to the poor surrogate accuracy of the trained Gaussian process (GP), particularly that in the regions where the optimal solutions locate. Hence, we propose to build multiple GP models instead of a single GP surrogate to complement each other and thus resolving the suboptimal problem of BO. Nevertheless, according to the bias-variance tradeoff equation, the individual prediction errors can increase when increasing the diversity of models, which may lead to even worse overall surrogate accuracy. On the other hand, based on the theory of Rademacher complexity, it has been proved that exploiting the agreement of models on unlabeled information can help to reduce the complexity of the hypothesis space, and therefore achieving the required surrogate accuracy with fewer samples. Such value of model agreement has been extensively demonstrated for co-training style algorithms to boost model accuracy with a small portion of samples. Inspired by the above, we propose a novel BO algorithm labeled as co-learning BO (CLBO), which exploits both model diversity and agreement on unlabeled information to improve the overall surrogate accuracy with limited samples, and therefore achieving more efficient global optimization. Through tests on five numerical toy problems and three engineering benchmarks, the effectiveness of proposed CLBO has been well demonstrated.
Physics-Informed Neuro-Evolution (PINE): A Survey and Prospects
Wong, Jian Cheng, Gupta, Abhishek, Ooi, Chin Chun, Chiu, Pao-Hsiung, Liu, Jiao, Ong, Yew-Soon
Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This review examines PINNs for the first time in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are the gradient-free methods of neuroevolution for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and neuroevolution for discovering bespoke neural architectures and balancing multiple conflicting terms in physics-informed learning objectives are positioned as important avenues for future research. Yet another exciting track is to cast neuroevolution as a meta-learner of generalizable PINN models.
The Digital Ecosystem of Beliefs: does evolution favour AI over humans?
Bossens, David M., Feng, Shanshan, Ong, Yew-Soon
As AI systems are integrated into social networks, there are AI safety concerns that AI-generated content may dominate the web, e.g. in popularity or impact on beliefs. To understand such questions, this paper proposes the Digital Ecosystem of Beliefs (Digico), the first evolutionary framework for controlled experimentation with multi-population interactions in simulated social networks. The framework models a population of agents which change their messaging strategies due to evolutionary updates following a Universal Darwinism approach, interact via messages, influence each other's beliefs through dynamics based on a contagion model, and maintain their beliefs through cognitive Lamarckian inheritance. Initial experiments with an abstract implementation of Digico show that: a) when AIs have faster messaging, evolution, and more influence in the recommendation algorithm, they get 80% to 95% of the views, depending on the size of the influence benefit; b) AIs designed for propaganda can typically convince 50% of humans to adopt extreme beliefs, and up to 85% when agents believe only a limited number of channels; c) a penalty for content that violates agents' beliefs reduces propaganda effectiveness by up to 8%. We further discuss implications for control (e.g. legislation) and Digico as a means of studying evolutionary principles.
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
Fan, Flint Xiaofeng, Tan, Cheston, Ong, Yew-Soon, Wattenhofer, Roger, Ooi, Wei-Tsang
In the era of increasing privacy concerns and demand for personalized experiences, traditional Reinforcement Learning with Human Feedback (RLHF) frameworks face significant challenges due to their reliance on centralized data. We introduce Federated Reinforcement Learning with Human Feedback (FedRLHF), a novel framework that decentralizes the RLHF process. FedRLHF enables collaborative policy learning across multiple clients without necessitating the sharing of raw data or human feedback, thereby ensuring robust privacy preservation. Leveraging federated reinforcement learning, each client integrates human feedback locally into their reward functions and updates their policies through personalized RLHF processes. We establish rigorous theoretical foundations for FedRLHF, providing convergence guarantees, and deriving sample complexity bounds that scale efficiently with the number of clients. Empirical evaluations on the MovieLens and IMDb datasets demonstrate that FedRLHF not only preserves user privacy but also achieves performance on par with centralized RLHF, while enhancing personalization across diverse client environments.
Active Large Language Model-based Knowledge Distillation for Session-based Recommendation
Du, Yingpeng, Sun, Zhu, Wang, Ziyan, Chua, Haoyan, Zhang, Jie, Ong, Yew-Soon
Large language models (LLMs) provide a promising way for accurate session-based recommendation (SBR), but they demand substantial computational time and memory. Knowledge distillation (KD)-based methods can alleviate these issues by transferring the knowledge to a small student, which trains a student based on the predictions of a cumbersome teacher. However, these methods encounter difficulties for LLM-based KD in SBR . 1) It is expensive to make LLMs predict for all instances in KD. 2) LLMs may make ineffective predictions for some instances in KD, e.g., incorrect predictions for hard instances or similar predictions as existing rec-ommenders for easy instances. In this paper, we propose an active LLM-based KD method in SBR, contributing to sustainable AI. To efficiently distill knowledge from LLMs with limited cost, we propose to extract a small proportion of instances predicted by LLMs. Meanwhile, for a more effective distillation, we propose an active learning strategy to extract instances that are as effective as possible for KD from a theoretical view. Specifically, we first formulate gains based on potential effects (e.g., effective, similar, and incorrect predictions by LLMs) and difficulties (e.g., easy or hard to fit) of instances for KD. Then, we propose to maximize the minimal gains of distillation to find the optimal selection policy for active learning, which can largely avoid extracting ineffective instances in KD. Experiments on real-world datasets show that our method significantly outperforms state-of-the-art methods for SBR. Introduction Recently, large language models (LLMs) have shown the potential to equip recommender systems (RSs) with their extensive knowledge and powerful reasoning capabilities (Zhao et al. 2023).
Towards Harmless Rawlsian Fairness Regardless of Demographic Prior
Wang, Xuanqian, Li, Jing, Tsang, Ivor W., Ong, Yew-Soon
Due to privacy and security concerns, recent advancements in group fairness advocate for model training regardless of demographic information. However, most methods still require prior knowledge of demographics. In this study, we explore the potential for achieving fairness without compromising its utility when no prior demographics are provided to the training set, namely \emph{harmless Rawlsian fairness}. We ascertain that such a fairness requirement with no prior demographic information essential promotes training losses to exhibit a Dirac delta distribution. To this end, we propose a simple but effective method named VFair to minimize the variance of training losses inside the optimal set of empirical losses. This problem is then optimized by a tailored dynamic update approach that operates in both loss and gradient dimensions, directing the model towards relatively fairer solutions while preserving its intact utility. Our experimental findings indicate that regression tasks, which are relatively unexplored from literature, can achieve significant fairness improvement through VFair regardless of any prior, whereas classification tasks usually do not because of their quantized utility measurements. The implementation of our method is publicly available at \url{https://github.com/wxqpxw/VFair}.