Odone, Francesca
Co-SemDepth: Fast Joint Semantic Segmentation and Depth Estimation on Aerial Images
AlaaEldin, Yara, Odone, Francesca
Understanding the geometric and semantic properties of the scene is crucial in autonomous navigation and particularly challenging in the case of Unmanned Aerial Vehicle (UAV) navigation. Such information may be by obtained by estimating depth and semantic segmentation maps of the surrounding environment and for their practical use in autonomous navigation, the procedure must be performed as close to real-time as possible. In this paper, we leverage monocular cameras on aerial robots to predict depth and semantic maps in low-altitude unstructured environments. We propose a joint deep-learning architecture that can perform the two tasks accurately and rapidly, and validate its effectiveness on MidAir and Aeroscapes benchmark datasets. Our joint-architecture proves to be competitive or superior to the other single and joint architecture methods while performing its task fast predicting 20.2 FPS on a single NVIDIA quadro p5000 GPU and it has a low memory footprint. All codes for training and prediction can be found on this link: https://github.com/Malga-Vision/Co-SemDepth
Diffusing DeBias: a Recipe for Turning a Bug into a Feature
Ciranni, Massimiliano, Pastore, Vito Paolo, Di Via, Roberto, Tartaglione, Enzo, Odone, Francesca, Murino, Vittorio
Deep learning model effectiveness in classification tasks is often challenged by the quality and quantity of training data which, whenever containing strong spurious correlations between specific attributes and target labels, can result in unrecoverable biases in model predictions. Tackling these biases is crucial in improving model generalization and trust, especially in real-world scenarios. This paper presents Diffusing DeBias (DDB), a novel approach acting as a plug-in for common methods in model debiasing while exploiting the inherent bias-learning tendency of diffusion models. Our approach leverages conditional diffusion models to generate synthetic bias-aligned images, used to train a bias amplifier model, to be further employed as an auxiliary method in different unsupervised debiasing approaches. Our proposed method, which also tackles the common issue of training set memorization typical of this type of tech- niques, beats current state-of-the-art in multiple benchmark datasets by significant margins, demonstrating its potential as a versatile and effective tool for tackling dataset bias in deep learning applications.
Transferring disentangled representations: bridging the gap between synthetic and real images
Dapueto, Jacopo, Noceti, Nicoletta, Odone, Francesca
Developing meaningful and efficient representations that separate the fundamental structure of the data generation mechanism is crucial in representation learning. However, Disentangled Representation Learning has not fully shown its potential on real images, because of correlated generative factors, their resolution and limited access to ground truth labels. Specifically on the latter, we investigate the possibility of leveraging synthetic data to learn general-purpose disentangled representations applicable to real data, discussing the effect of fine-tuning and what properties of disentanglement are preserved after the transfer. We provide an extensive empirical study to address these issues. In addition, we propose a new interpretable intervention-based metric, to measure the quality of factors encoding in the representation. Our results indicate that some level of disentanglement, transferring a representation from synthetic to real data, is possible and effective.
Time-to-Label: Temporal Consistency for Self-Supervised Monocular 3D Object Detection
Mouawad, Issa, Brasch, Nikolas, Manhardt, Fabian, Tombari, Federico, Odone, Francesca
Monocular 3D object detection continues to attract attention due to the cost benefits and wider availability of RGB cameras. Despite the recent advances and the ability to acquire data at scale, annotation cost and complexity still limit the size of 3D object detection datasets in the supervised settings. Self-supervised methods, on the other hand, aim at training deep networks relying on pretext tasks or various consistency constraints. Moreover, other 3D perception tasks (such as depth estimation) have shown the benefits of temporal priors as a self-supervision signal. In this work, we argue that the temporal consistency on the level of object poses, provides an important supervision signal given the strong prior on physical motion. Specifically, we propose a self-supervised loss which uses this consistency, in addition to render-and-compare losses, to refine noisy pose predictions and derive high-quality pseudo labels. To assess the effectiveness of the proposed method, we finetune a synthetically trained monocular 3D object detection model using the pseudo-labels that we generated on real data. Evaluation on the standard KITTI3D benchmark demonstrates that our method reaches competitive performance compared to other monocular self-supervised and supervised methods.
Are we done with object recognition? The iCub robot's perspective
Pasquale, Giulia, Ciliberto, Carlo, Odone, Francesca, Rosasco, Lorenzo, Natale, Lorenzo
We report on an extensive study of the benefits and limitations of current deep learning approaches to object recognition in robot vision scenarios, introducing a novel dataset used for our investigation. To avoid the biases in currently available datasets, we consider a natural human-robot interaction setting to design a data-acquisition protocol for visual object recognition on the iCub humanoid robot. Analyzing the performance of off-the-shelf models trained off-line on large-scale image retrieval datasets, we show the necessity for knowledge transfer. We evaluate different ways in which this last step can be done, and identify the major bottlenecks affecting robotic scenarios. By studying both object categorization and identification problems, we highlight key differences between object recognition in robotics applications and in image retrieval tasks, for which the considered deep learning approaches have been originally designed. In a nutshell, our results confirm the remarkable improvements yield by deep learning in this setting, while pointing to specific open challenges that need be addressed for seamless deployment in robotics.
Learning, Regularization and Ill-Posed Inverse Problems
Rosasco, Lorenzo, Caponnetto, Andrea, Vito, Ernesto D., Odone, Francesca, Giovannini, Umberto D.
Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory. In this paper we provide a positive answer to both questions. Indeed, considering the square loss, we translate the learning problem in the language of regularization theory and show that consistency results and optimal regularization parameter choice can be derived by the discretization of the corresponding inverse problem.
Learning, Regularization and Ill-Posed Inverse Problems
Rosasco, Lorenzo, Caponnetto, Andrea, Vito, Ernesto D., Odone, Francesca, Giovannini, Umberto D.
Many works have shown that strong connections relate learning from examples toregularization techniques for ill-posed inverse problems. Nevertheless bynow there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory.In this paper we provide a positive answer to both questions. Indeed, considering the square loss, we translate the learning problem in the language of regularization theory and show that consistency resultsand optimal regularization parameter choice can be derived by the discretization of the corresponding inverse problem.