Terada, Yu, Obuchi, Tomoyuki, Isomura, Takuya, Kabashima, Yoshiyuki

Inferring directional couplings from the spike data of networks is desired in various scientific fields such as neuroscience. Here, we apply a recently proposed objective procedure to the spike data obtained from the Hodgkin-Huxley type models and in vitro neuronal networks cultured in a circular structure. As a result, we succeed in reconstructing synaptic connections accurately from the evoked activity as well as the spontaneous one. To obtain the results, we invent an analytic formula approximately implementing a method of screening relevant couplings. This significantly reduces the computational cost of the screening method employed in the proposed objective procedure, making it possible to treat large-size systems as in this study.

Kawamoto, Tatsuro, Tsubaki, Masashi, Obuchi, Tomoyuki

A theoretical performance analysis of the graph neural network (GNN) is presented. For classification tasks, the neural network approach has the advantage in terms of flexibility that it can be employed in a data-driven manner, whereas Bayesian inference requires the assumption of a specific model. A fundamental question is then whether GNN has a high accuracy in addition to this flexibility. Moreover, whether the achieved performance is predominately a result of the backpropagation or the architecture itself is a matter of considerable interest. To gain a better insight into these questions, a mean-field theory of a minimal GNN architecture is developed for the graph partitioning problem.

Abbara, Alia, Kabashima, Yoshiyuki, Obuchi, Tomoyuki, Xu, Yingying

We investigate the learning performance of the pseudolikelihood maximization method for inverse Ising problems. In the teacher-student scenario under the assumption that the teacher's couplings are sparse and the student does not know the graphical structure, the learning curve and order parameters are assessed in the typical case using the replica and cavity methods from statistical mechanics. Our formulation is also applicable to a certain class of cost functions having locality; the standard likelihood does not belong to that class. The derived analytical formulas indicate that the perfect inference of the presence/absence of the teacher's couplings is possible in the thermodynamic limit taking the number of spins $N$ as infinity while keeping the dataset size $M$ proportional to $N$, as long as $\alpha=M/N > 2$. Meanwhile, the formulas also show that the estimated coupling values corresponding to the truly existing ones in the teacher tend to be overestimated in the absolute value, manifesting the presence of estimation bias. These results are considered to be exact in the thermodynamic limit on locally tree-like networks, such as the regular random or Erd\H{o}s--R\'enyi graphs. Numerical simulation results fully support the theoretical predictions. Additional biases in the estimators on loopy graphs are also discussed.

Yasuda, Muneki, Obuchi, Tomoyuki

In this study, we consider an empirical Bayes method for Boltzmann machines and propose an algorithm for it. The empirical Bayes method allows estimation of the values of the hyperparameters of the Boltzmann machine by maximizing a specific likelihood function referred to as the empirical Bayes likelihood function in this study. However, the maximization is computationally hard because the empirical Bayes likelihood function involves intractable integrations of the partition function. The proposed algorithm avoids this computational problem by using the replica method and the Plefka expansion. Our method does not require any iterative procedures and is quite simple and fast, though it introduces a bias to the estimate, which exhibits an unnatural behavior with respect to the size of the dataset. This peculiar behavior is supposed to be due to the approximate treatment by the Plefka expansion. A possible extension to overcome this behavior is also discussed.

Obuchi, Tomoyuki, Sakata, Ayaka

We investigate the signal reconstruction performance of sparse linear regression in the presence of noise when piecewise continuous nonconvex penalties are used. Among such penalties, we focus on the smoothly clipped absolute deviation (SCAD) penalty. The contributions of this study are three-fold: We first present a theoretical analysis of a typical reconstruction performance, using the replica method, under the assumption that each component of the design matrix is given as an independent and identically distributed (i.i.d.) Gaussian variable. This clarifies the superiority of the SCAD estimator compared with $\ell_1$ in a wide parameter range, although the nonconvex nature of the penalty tends to lead to solution multiplicity in certain regions. This multiplicity is shown to be connected to replica symmetry breaking in the spin-glass theory, and associated phase diagrams are given. We also show that the global minimum of the mean square error between the estimator and the true signal is located in the replica symmetric phase. Second, we develop an approximate formula efficiently computing the cross-validation error without actually conducting the cross-validation, which is also applicable to the non-i.i.d. design matrices. It is shown that this formula is only applicable to the unique solution region and tends to be unstable in the multiple solution region. We implement instability detection procedures, which allows the approximate formula to stand alone and resultantly enables us to draw phase diagrams for any specific dataset. Third, we propose an annealing procedure, called nonconvexity annealing, to obtain the solution path efficiently. Numerical simulations are conducted on simulated datasets to examine these results to verify the consistency of the theoretical results and the efficiency of the approximate formula and nonconvexity annealing.

Sakata, Ayaka, Obuchi, Tomoyuki

We consider compressed sensing formulated as a minimization problem of nonconvex sparse penalties, Smoothly Clipped Absolute deviation (SCAD) and Minimax Concave Penalty (MCP). The nonconvexity of these penalties is controlled by nonconvexity parameters, and L1 penalty is contained as a limit with respect to these parameters. The analytically derived reconstruction limit overcomes that of L1 and the algorithmic limit in the Bayes-optimal setting, when the nonconvexity parameters have suitable values. For the practical usage, we apply the approximate message passing (AMP) to these nonconvex penalties. We show that the performance of AMP is considerably improved by controlling nonconvexity parameters.

Terada, Yu, Obuchi, Tomoyuki, Isomura, Takuya, Kabashima, Yoshiyuki

Kawamoto, Tatsuro, Tsubaki, Masashi, Obuchi, Tomoyuki

A theoretical performance analysis of the graph neural network (GNN) is presented. For classification tasks, the neural network approach has the advantage in terms of flexibility that it can be employed in a data-driven manner, whereas Bayesian inference requires the assumption of a specific model. A fundamental question is then whether GNN has a high accuracy in addition to this flexibility. Moreover, whether the achieved performance is predominately a result of the backpropagation or the architecture itself is a matter of considerable interest. To gain a better insight into these questions, a mean-field theory of a minimal GNN architecture is developed for the graph partitioning problem. This demonstrates a good agreement with numerical experiments.

Terada, Yu, Obuchi, Tomoyuki, Isomura, Takuya, Kabashima, Yoshiyuki

Kawamoto, Tatsuro, Tsubaki, Masashi, Obuchi, Tomoyuki