Obermayer, Klaus
Development of Orientation and Ocular Dominance Columns in Infant Macaques
Obermayer, Klaus, Kiorpes, Lynne, Blasdel, Gary G.
Maps of orientation preference and ocular dominance were recorded optically from the cortices of 5 infant macaque monkeys, ranging in age from 3.5 to 14 weeks. In agreement with previous observations, we found that basic features of orientation and ocular dominance maps, as well as correlations between them, are present and robust by 3.5 weeks of age. We did observe changes in the strength of ocular dominance signals, as well as in the spacing of ocular dominance bands, both of which increased steadily between 3.5 and 14 weeks of age. The latter finding suggests that the adult spacing of ocular dominance bands depends on cortical growth in neonatal animals. Since we found no corresponding increase in the spacing of orientation preferences, however, there is a possibility that the orientation preferences of some cells change as the cortical surface expands. Since correlations between the patterns of orientation selectivity and ocular dominance are present at an age, when the visual system is still immature, it seems more likely that their development may be an innate process and may not require extensive visual experience.
Development of Orientation and Ocular Dominance Columns in Infant Macaques
Obermayer, Klaus, Kiorpes, Lynne, Blasdel, Gary G.
Maps of orientation preference and ocular dominance were recorded optically from the cortices of 5 infant macaque monkeys, ranging in age from 3.5 to 14 weeks. In agreement with previous observations, we found that basic features of orientation and ocular dominance maps, as well as correlations between them, are present and robust by 3.5 weeks of age. We did observe changes in the strength of ocular dominance signals, as well as in the spacing of ocular dominance bands,both of which increased steadily between 3.5 and 14 weeks of age. The latter finding suggests that the adult spacing of ocular dominance bands depends on cortical growth in neonatal animals. Since we found no corresponding increase in the spacing of orientation preferences, however, there is a possibility that the orientation preferences of some cells change as the cortical surface expands. Since correlations between the patterns of orientation selectivity and ocular dominance are present at an age, when the visual system is still immature, it seems more likely that their development maybe an innate process and may not require extensive visual experience.
Development and Spatial Structure of Cortical Feature Maps: A Model Study
Obermayer, Klaus, Ritter, Helge, Schulten, Klaus
K. Schulten Beckman-Insti t ute University of Illinois Urbana, IL 61801 Feature selective cells in the primary visual cortex of several species are organized inhierarchical topographic maps of stimulus features like "position in visual space", "orientation" and" ocular dominance". In order to understand anddescribe their spatial structure and their development, we investigate aself-organizing neural network model based on the feature map algorithm. The model explains map formation as a dimension-reducing mapping from a high-dimensional feature space onto a two-dimensional lattice, such that "similarity" between features (or feature combinations) is translated into "spatial proximity" between the corresponding feature selective cells. The model is able to reproduce several aspects of the spatial structure of cortical maps in the visual cortex. 1 Introduction Cortical maps are functionally defined structures of the cortex, which are characterized byan ordered spatial distribution of functionally specialized cells along the cortical surface. In the primary visual area(s) the response properties of these cells must be described by several independent features, and there is a strong tendency to map combinations of these features onto the cortical surface in a way that translates "similarity" into "spatial proximity" of the corresponding feature selective cells (see e.g.
Development and Spatial Structure of Cortical Feature Maps: A Model Study
Obermayer, Klaus, Ritter, Helge, Schulten, Klaus
Feature selective cells in the primary visual cortex of several species are organized in hierarchical topographic maps of stimulus features like "position in visual space", "orientation" and" ocular dominance". In order to understand and describe their spatial structure and their development, we investigate a self-organizing neural network model based on the feature map algorithm. The model explains map formation as a dimension-reducing mapping from a high-dimensional feature space onto a two-dimensional lattice, such that "similarity" between features (or feature combinations) is translated into "spatial proximity" between the corresponding feature selective cells. The model is able to reproduce several aspects of the spatial structure of cortical maps in the visual cortex. 1 Introduction Cortical maps are functionally defined structures of the cortex, which are characterized by an ordered spatial distribution of functionally specialized cells along the cortical surface. In the primary visual area(s) the response properties of these cells must be described by several independent features, and there is a strong tendency to map combinations of these features onto the cortical surface in a way that translates "similarity" into "spatial proximity" of the corresponding feature selective cells (see e.g.