Development and Spatial Structure of Cortical Feature Maps: A Model Study

Obermayer, Klaus, Ritter, Helge, Schulten, Klaus

Neural Information Processing Systems 

Feature selective cells in the primary visual cortex of several species are organized in hierarchical topographic maps of stimulus features like "position in visual space", "orientation" and" ocular dominance". In order to understand and describe their spatial structure and their development, we investigate a self-organizing neural network model based on the feature map algorithm. The model explains map formation as a dimension-reducing mapping from a high-dimensional feature space onto a two-dimensional lattice, such that "similarity" between features (or feature combinations) is translated into "spatial proximity" between the corresponding feature selective cells. The model is able to reproduce several aspects of the spatial structure of cortical maps in the visual cortex. 1 Introduction Cortical maps are functionally defined structures of the cortex, which are characterized by an ordered spatial distribution of functionally specialized cells along the cortical surface. In the primary visual area(s) the response properties of these cells must be described by several independent features, and there is a strong tendency to map combinations of these features onto the cortical surface in a way that translates "similarity" into "spatial proximity" of the corresponding feature selective cells (see e.g.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found