Goto

Collaborating Authors

 Nowozin, Sebastian


Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics

arXiv.org Machine Learning

Molecular dynamics (MD) simulation is a widely used technique to simulate molecular systems, most commonly at the all-atom resolution where equations of motion are integrated with timesteps on the order of femtoseconds ($1\textrm{fs}=10^{-15}\textrm{s}$). MD is often used to compute equilibrium properties, which requires sampling from an equilibrium distribution such as the Boltzmann distribution. However, many important processes, such as binding and folding, occur over timescales of milliseconds or beyond, and cannot be efficiently sampled with conventional MD. Furthermore, new MD simulations need to be performed for each molecular system studied. We present Timewarp, an enhanced sampling method which uses a normalising flow as a proposal distribution in a Markov chain Monte Carlo method targeting the Boltzmann distribution. The flow is trained offline on MD trajectories and learns to make large steps in time, simulating the molecular dynamics of $10^{5} - 10^{6}\:\textrm{fs}$. Crucially, Timewarp is transferable between molecular systems: once trained, we show that it generalises to unseen small peptides (2-4 amino acids) at all-atom resolution, exploring their metastable states and providing wall-clock acceleration of sampling compared to standard MD. Our method constitutes an important step towards general, transferable algorithms for accelerating MD.


Efficient data transport over multimode light-pipes with Megapixel images using differentiable ray tracing and Machine-learning

arXiv.org Artificial Intelligence

Retrieving images transmitted through multi-mode fibers is of growing interest, thanks to their ability to confine and transport light efficiently in a compact system. Here, we demonstrate machine-learning-based decoding of large-scale digital images (pages), maximizing page capacity for optical storage applications. Using a millimeter-sized square cross-section waveguide, we image an 8-bit spatial light modulator, presenting data as a matrix of symbols. Normally, decoders will incur a prohibitive O(n^2) computational scaling to decode n symbols in spatially scrambled data. However, by combining a digital twin of the setup with a U-Net, we can retrieve up to 66 kB using efficient convolutional operations only. We compare trainable ray-tracing-based with eigenmode-based twins and show the former to be superior thanks to its ability to overcome the simulation-to-experiment gap by adjusting to optical imperfections. We train the pipeline end-to-end using a differentiable mutual-information estimator based on the von-Mises distribution, generally applicable to phase-coding channels.


FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and Federated Image Classification

arXiv.org Machine Learning

Modern deep learning systems are increasingly deployed in situations such as personalization and federated learning where it is necessary to support i) learning on small amounts of data, and ii) communication efficient distributed training protocols. In this work, we develop FiLM Transfer (FiT) which fulfills these requirements in the image classification setting by combining ideas from transfer learning (fixed pretrained backbones and fine-tuned FiLM adapter layers) and meta-learning (automatically configured Naive Bayes classifiers and episodic training) to yield parameter efficient models with superior classification accuracy at low-shot. The resulting parameter efficiency is key for enabling few-shot learning, inexpensive model updates for personalization, and communication efficient federated learning. We experiment with FiT on a wide range of downstream datasets and show that it achieves better classification accuracy than the leading Big Transfer (BiT) algorithm at low-shot and achieves state-of-the art accuracy on the challenging VTAB-1k benchmark, with fewer than 1% of the updateable parameters. Finally, we demonstrate the parameter efficiency and superior accuracy of FiT in distributed low-shot applications including model personalization and federated learning where model update size is an important performance metric.


Memory Efficient Meta-Learning with Large Images

arXiv.org Machine Learning

Meta learning approaches to few-shot classification are computationally efficient at test time requiring just a few optimization steps or single forward pass to learn a new task, but they remain highly memory-intensive to train. This limitation arises because a task's entire support set, which can contain up to 1000 images, must be processed before an optimization step can be taken. Harnessing the performance gains offered by large images thus requires either parallelizing the meta-learner across multiple GPUs, which may not be available, or trade-offs between task and image size when memory constraints apply. We improve on both options by proposing LITE, a general and memory efficient episodic training scheme that enables meta-training on large tasks composed of large images on a single GPU. We achieve this by observing that the gradients for a task can be decomposed into a sum of gradients over the task's training images. This enables us to perform a forward pass on a task's entire training set but realize significant memory savings by back-propagating only a random subset of these images which we show is an unbiased approximation of the full gradient. We use LITE to train meta-learners and demonstrate new state-of-the-art accuracy on the real-world ORBIT benchmark and 3 of the 4 parts of the challenging VTAB+MD benchmark relative to leading meta-learners. LITE also enables meta-learners to be competitive with transfer learning approaches but at a fraction of the test-time computational cost, thus serving as a counterpoint to the recent narrative that transfer learning is all you need for few-shot classification.


Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect

arXiv.org Artificial Intelligence

The "cold posterior effect" (CPE) in Bayesian deep learning describes the uncomforting observation that the predictive performance of Bayesian neural networks can be significantly improved if the Bayes posterior is artificially sharpened using a temperature parameter T<1. The CPE is problematic in theory and practice and since the effect was identified many researchers have proposed hypotheses to explain the phenomenon. However, despite this intensive research effort the effect remains poorly understood. In this work we provide novel and nuanced evidence relevant to existing explanations for the cold posterior effect, disentangling three hypotheses: 1. The dataset curation hypothesis of Aitchison (2020): we show empirically that the CPE does not arise in a real curated data set but can be produced in a controlled experiment with varying curation strength. 2. The data augmentation hypothesis of Izmailov et al. (2021) and Fortuin et al. (2021): we show empirically that data augmentation is sufficient but not necessary for the CPE to be present. 3. The bad prior hypothesis of Wenzel et al. (2020): we use a simple experiment evaluating the relative importance of the prior and the likelihood, strongly linking the CPE to the prior. Our results demonstrate how the CPE can arise in isolation from synthetic curation, data augmentation, and bad priors. Cold posteriors observed "in the wild" are therefore unlikely to arise from a single simple cause; as a result, we do not expect a simple "fix" for cold posteriors.


Stabilizing Training of Generative Adversarial Networks through Regularization

Neural Information Processing Systems

Deep generative models based on Generative Adversarial Networks (GANs) have demonstrated impressive sample quality but in order to work they require a careful choice of architecture, parameter initialization, and selection of hyper-parameters. This fragility is in part due to a dimensional mismatch or non-overlapping support between the model distribution and the data distribution, causing their density ratio and the associated f -divergence to be undefined. We overcome this fundamental limitation and propose a new regularization approach with low computational cost that yields a stable GAN training procedure. We demonstrate the effectiveness of this regularizer accross several architectures trained on common benchmark image generation tasks. Our regularization turns GAN models into reliable building blocks for deep learning.


Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations

arXiv.org Machine Learning

Recently there has been an increased interest in unsupervised learning of disentangled representations using the Variational Autoencoder (VAE) framework. Most of the existing work has focused largely on modifying the variational cost function to achieve this goal. We first show that these modifications, e.g. beta-VAE, simplify the tendency of variational inference to underfit causing pathological over-pruning and over-orthogonalization of learned components. Second we propose a complementary approach: to modify the probabilistic model with a structured latent prior. This prior allows to discover latent variable representations that are structured into a hierarchy of independent vector spaces. The proposed prior has three major advantages: First, in contrast to the standard VAE normal prior the proposed prior is not rotationally invariant. This resolves the problem of unidentifiability of the standard VAE normal prior. Second, we demonstrate that the proposed prior encourages a disentangled latent representation which facilitates learning of disentangled representations. Third, extensive quantitative experiments demonstrate that the prior significantly mitigates the trade-off between reconstruction loss and disentanglement over the state of the art.


Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model

arXiv.org Artificial Intelligence

In this paper we introduce the ice-start problem, i.e., the challenge of deploying machine learning models when only little or no training data is initially available, and acquiring each feature element of data is associated with costs. This setting is representative for the real-world machine learning applications. For instance, in the health-care domain, when training an AI system for predicting patient metrics from lab tests, obtaining every single measurement comes with a high cost. Active learning, where only the label is associated with a cost does not apply to such problem, because performing all possible lab tests to acquire a new training datum would be costly, as well as unnecessary due to redundancy. We propose Icebreaker, a principled framework to approach the ice-start problem. Icebreaker uses a full Bayesian Deep Latent Gaussian Model (BELGAM) with a novel inference method. Our proposed method combines recent advances in amortized inference and stochastic gradient MCMC to enable fast and accurate posterior inference. By utilizing BELGAM's ability to fully quantify model uncertainty, we also propose two information acquisition functions for imputation and active prediction problems. We demonstrate that BELGAM performs significantly better than the previous VAE (Variational autoencoder) based models, when the data set size is small, using both machine learning benchmarks and real-world recommender systems and health-care applications. Moreover, based on BELGAM, Icebreaker further improves the performance and demonstrate the ability to use minimum amount of the training data to obtain the highest test time performance.


Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes

arXiv.org Machine Learning

The goal of this paper is to design image classification systems that, after an initial multi-task training phase, can automatically adapt to new tasks encountered at test time. We introduce a conditional neural process based approach to the multi-task classification setting for this purpose, and establish connections to the meta-learning and few-shot learning literature. The resulting approach, called CNAPs, comprises a classifier whose parameters are modulated by an adaptation network that takes the current task's dataset as input. We demonstrate that CNAPs achieves state-of-the-art results on the challenging Meta-Dataset benchmark indicating high-quality transfer-learning. We show that the approach is robust, avoiding both over-fitting in low-shot regimes and under-fitting in high-shot regimes. Timing experiments reveal that CNAPs is computationally efficient at test-time as it does not involve gradient based adaptation. Finally, we show that trained models are immediately deployable to continual learning and active learning where they can outperform existing approaches that do not leverage transfer learning.


Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

arXiv.org Machine Learning

Modern machine learning methods including deep learning have achieved great success in predictive accuracy for supervised learning tasks, but may still fall short in giving useful estimates of their predictive {\em uncertainty}. Quantifying uncertainty is especially critical in real-world settings, which often involve input distributions that are shifted from the training distribution due to a variety of factors including sample bias and non-stationarity. In such settings, well calibrated uncertainty estimates convey information about when a model's output should (or should not) be trusted. Many probabilistic deep learning methods, including Bayesian-and non-Bayesian methods, have been proposed in the literature for quantifying predictive uncertainty, but to our knowledge there has not previously been a rigorous large-scale empirical comparison of these methods under dataset shift. We present a large-scale benchmark of existing state-of-the-art methods on classification problems and investigate the effect of dataset shift on accuracy and calibration. We find that traditional post-hoc calibration does indeed fall short, as do several other previous methods. However, some methods that marginalize over models give surprisingly strong results across a broad spectrum of tasks.