Goto

Collaborating Authors

 Norrlöf, Mikael


Probabilistic Bubble Roadmap

arXiv.org Artificial Intelligence

SE Department of Information T echnology, Uppsala University Abstract Finding a collision-free path is a fundamental problem in robotics, where the sampling based planners have a long line of success. However, this approach is computationally expensive, due to the frequent use of collision-detection. Furthermore, the produced paths are usually jagged and require further post-processing before they can be tracked. Due to their high computational cost, these planners are usually restricted to static settings, since they are not able to cope with rapid changes in the environment. In our work, we remove this restriction by introducing a learned signed distance function expressed in the configuration space of the robot. The signed distance allows us to form collision-free spherical regions in the configuration space, which we use to suggest a new multi-query path planner that also works in dynamic settings. We propose the probabilistic bubble roadmap planner, which enhances the probabilistic roadmap planner (PRM) by using spheres as vertices and compute the edges by checking for neighboring spheres which intersect. We benchmark our approach in a static setting where we show that we can produce paths that are shorter than the paths produced by the PRM, while having a smaller sized roadmap and finding the paths faster. Finally, we show that we can rapidly rewire the graph in the case of new obstacles introduced at run time and therefore produce paths in the case of moving obstacles. Keywords: Motion planning, Signed distance function, Manipulators, Robotics 1. Introduction Motion planning is the problem of finding a collision-free trajectory that connects a given start and goal configuration. The planning takes place in the configuration space of the robot.


Automatic Behavior Tree Expansion with LLMs for Robotic Manipulation

arXiv.org Artificial Intelligence

Robotic systems for manipulation tasks are increasingly expected to be easy to configure for new tasks or unpredictable environments, while keeping a transparent policy that is readable and verifiable by humans. We propose the method BEhavior TRee eXPansion with Large Language Models (BETR-XP-LLM) to dynamically and automatically expand and configure Behavior Trees as policies for robot control. The method utilizes an LLM to resolve errors outside the task planner's capabilities, both during planning and execution. We show that the method is able to solve a variety of tasks and failures and permanently update the policy to handle similar problems in the future.


Time-Optimal Path Tracking for Cooperative Manipulators: A Convex Optimization Approach

arXiv.org Artificial Intelligence

This paper studies the time-optimal path tracking problem for a team of cooperating robotic manipulators carrying an object. Considering the problem for rigidly grasped objects, we show that it can be cast as a convex optimization problem and solved efficiently with a guarantee of optimality. When formulating the problem, we avoid using a particular wrench distribution and exploit the full actuation available to the system. Then, we consider the problem for grasps using frictional forces and show that this problem also, under a force-closure grasp assumption, can be formulated as a convex optimization problem and solved efficiently and to optimality. To ensure a firm grasp, internal forces have been taken into account in this approach.