Nolte, Guido
Estimating vector fields using sparse basis field expansions
Haufe, Stefan, Nikulin, Vadim V., Ziehe, Andreas, Müller, Klaus-Robert, Nolte, Guido
We introduce a novel framework for estimating vector fields using sparse basis field expansions (S-FLEX). The notion of basis fields, which are an extension of scalar basis functions, arises naturally in our framework from a rotational invariance requirement. We consider a regression setting as well as inverse problems. All variants discussed lead to second-order cone programming formulations. While our framework is generally applicable to any type of vector field, we focus in this paper on applying it to solving the EEG/MEG inverse problem. It is shown that significantly more precise and neurophysiologically more plausible location and shape estimates of cerebral current sources from EEG/MEG measurements become possible with our method when comparing to the state-of-the-art.
Modeling sparse connectivity between underlying brain sources for EEG/MEG
Haufe, Stefan, Tomioka, Ryota, Nolte, Guido, Mueller, Klaus-Robert, Kawanabe, Motoaki
We propose a novel technique to assess functional brain connectivity in EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: (a) the EEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model, (b) the demixing is estimated jointly with the source MVAR parameters, (c) overfitting is avoided by using the Group Lasso penalty. This approach allows to extract the appropriate level cross-talk between the extracted sources and in this manner we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data, and compare to a number of existing algorithms with excellent results.
Sparse Causal Discovery in Multivariate Time Series
Haufe, Stefan, Nolte, Guido, Mueller, Klaus-Robert, Kraemer, Nicole
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious causality structure is assumed, a promising approach to causal discovery consists in fitting VAR models with an additional sparsity-promoting regularization. Along this line we here propose that sparsity should be enforced for the subgroups of coefficients that belong to each pair of time series, as the absence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such behavior can be achieved by means of l1-l2-norm regularized regression, for which an efficient active set solver has been proposed recently. Our method is shown to outperform standard methods in recovering simulated causality graphs. The results are on par with a second novel approach which uses multiple statistical testing.
Analyzing Coupled Brain Sources: Distinguishing True from Spurious Interaction
Nolte, Guido, Ziehe, Andreas, Meinecke, Frank, Müller, Klaus-Robert
When trying to understand the brain, it is of fundamental importance to analyse (e.g. from EEG/MEG measurements) what parts of the cortex interact with each other in order to infer more accurate models of brain activity. Common techniques like Blind Source Separation (BSS) can estimate brain sources and single out artifacts by using the underlying assumption of source signal independence. However, physiologically interesting brain sources typically interact, so BSS will--by construction-- fail to characterize them properly. Noting that there are truly interacting sources and signals that only seemingly interact due to effects of volume conduction, this work aims to contribute by distinguishing these effects. For this a new BSS technique is proposed that uses anti-symmetrized cross-correlation matrices and subsequent diagonalization. The resulting decomposition consists of the truly interacting brain sources and suppresses any spurious interaction stemming from volume conduction. Our new concept of interacting source analysis (ISA) is successfully demonstrated on MEG data.
Analyzing Coupled Brain Sources: Distinguishing True from Spurious Interaction
Nolte, Guido, Ziehe, Andreas, Meinecke, Frank, Müller, Klaus-Robert
When trying to understand the brain, it is of fundamental importance to analyse (e.g. from EEG/MEG measurements) what parts of the cortex interact with each other in order to infer more accurate models of brain activity. Common techniques like Blind Source Separation (BSS) can estimate brainsources and single out artifacts by using the underlying assumption ofsource signal independence. However, physiologically interesting brain sources typically interact, so BSS will--by construction-- fail to characterize them properly. Noting that there are truly interacting sources and signals that only seemingly interact due to effects of volume conduction, this work aims to contribute by distinguishing these effects. For this a new BSS technique is proposed that uses anti-symmetrized cross-correlation matrices and subsequent diagonalization. The resulting decomposition consists of the truly interacting brain sources and suppresses anyspurious interaction stemming from volume conduction. Our new concept of interacting source analysis (ISA) is successfully demonstrated onMEG data.