Nishimura, Haruki
Is Your Imitation Learning Policy Better than Mine? Policy Comparison with Near-Optimal Stopping
Snyder, David, Hancock, Asher James, Badithela, Apurva, Dixon, Emma, Miller, Patrick, Ambrus, Rares Andrei, Majumdar, Anirudha, Itkina, Masha, Nishimura, Haruki
Imitation learning has enabled robots to perform complex, long-horizon tasks in challenging dexterous manipulation settings. As new methods are developed, they must be rigorously evaluated and compared against corresponding baselines through repeated evaluation trials. However, policy comparison is fundamentally constrained by a small feasible sample size (e.g., 10 or 50) due to significant human effort and limited inference throughput of policies. This paper proposes a novel statistical framework for rigorously comparing two policies in the small sample size regime. Prior work in statistical policy comparison relies on batch testing, which requires a fixed, pre-determined number of trials and lacks flexibility in adapting the sample size to the observed evaluation data. Furthermore, extending the test with additional trials risks inducing inadvertent p-hacking, undermining statistical assurances. In contrast, our proposed statistical test is sequential, allowing researchers to decide whether or not to run more trials based on intermediate results. This adaptively tailors the number of trials to the difficulty of the underlying comparison, saving significant time and effort without sacrificing probabilistic correctness. Extensive numerical simulation and real-world robot manipulation experiments show that our test achieves near-optimal stopping, letting researchers stop evaluation and make a decision in a near-minimal number of trials. Specifically, it reduces the number of evaluation trials by up to 40% as compared to state-of-the-art baselines, while preserving the probabilistic correctness and statistical power of the comparison. Moreover, our method is strongest in the most challenging comparison instances (requiring the most evaluation trials); in a multi-task comparison scenario, we save the evaluator more than 200 simulation rollouts.
Can We Detect Failures Without Failure Data? Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies
Xu, Chen, Nguyen, Tony Khuong, Dixon, Emma, Rodriguez, Christopher, Miller, Patrick, Lee, Robert, Shah, Paarth, Ambrus, Rares, Nishimura, Haruki, Itkina, Masha
Recent years have witnessed impressive robotic manipulation systems driven by advances in imitation learning and generative modeling, such as diffusion- and flow-based approaches. As robot policy performance increases, so does the complexity and time horizon of achievable tasks, inducing unexpected and diverse failure modes that are difficult to predict a priori. To enable trustworthy policy deployment in safety-critical human environments, reliable runtime failure detection becomes important during policy inference. However, most existing failure detection approaches rely on prior knowledge of failure modes and require failure data during training, which imposes a significant challenge in practicality and scalability. In response to these limitations, we present FAIL-Detect, a modular two-stage approach for failure detection in imitation learning-based robotic manipulation. To accurately identify failures from successful training data alone, we frame the problem as sequential out-of-distribution (OOD) detection. We first distill policy inputs and outputs into scalar signals that correlate with policy failures and capture epistemic uncertainty. FAIL-Detect then employs conformal prediction (CP) as a versatile framework for uncertainty quantification with statistical guarantees. Empirically, we thoroughly investigate both learned and post-hoc scalar signal candidates on diverse robotic manipulation tasks. Our experiments show learned signals to be mostly consistently effective, particularly when using our novel flow-based density estimator. Furthermore, our method detects failures more accurately and faster than state-of-the-art (SOTA) failure detection baselines. These results highlight the potential of FAIL-Detect to enhance the safety and reliability of imitation learning-based robotic systems as they progress toward real-world deployment.
How Generalizable Is My Behavior Cloning Policy? A Statistical Approach to Trustworthy Performance Evaluation
Vincent, Joseph A., Nishimura, Haruki, Itkina, Masha, Shah, Paarth, Schwager, Mac, Kollar, Thomas
With the rise of stochastic generative models in robot policy learning, end-to-end visuomotor policies are increasingly successful at solving complex tasks by learning from human demonstrations. Nevertheless, since real-world evaluation costs afford users only a small number of policy rollouts, it remains a challenge to accurately gauge the performance of such policies. This is exacerbated by distribution shifts causing unpredictable changes in performance during deployment. To rigorously evaluate behavior cloning policies, we present a framework that provides a tight lower-bound on robot performance in an arbitrary environment, using a minimal number of experimental policy rollouts. Notably, by applying the standard stochastic ordering to robot performance distributions, we provide a worst-case bound on the entire distribution of performance (via bounds on the cumulative distribution function) for a given task. We build upon established statistical results to ensure that the bounds hold with a user-specified confidence level and tightness, and are constructed from as few policy rollouts as possible. In experiments we evaluate policies for visuomotor manipulation in both simulation and hardware. Specifically, we (i) empirically validate the guarantees of the bounds in simulated manipulation settings, (ii) find the degree to which a learned policy deployed on hardware generalizes to new real-world environments, and (iii) rigorously compare two policies tested in out-of-distribution settings. Our experimental data, code, and implementation of confidence bounds are open-source.
Residual Q-Learning: Offline and Online Policy Customization without Value
Li, Chenran, Tang, Chen, Nishimura, Haruki, Mercat, Jean, Tomizuka, Masayoshi, Zhan, Wei
Imitation Learning (IL) is a widely used framework for learning imitative behavior from demonstrations. It is especially appealing for solving complex real-world tasks where handcrafting reward function is difficult, or when the goal is to mimic human expert behavior. However, the learned imitative policy can only follow the behavior in the demonstration. When applying the imitative policy, we may need to customize the policy behavior to meet different requirements coming from diverse downstream tasks. Meanwhile, we still want the customized policy to maintain its imitative nature. To this end, we formulate a new problem setting called policy customization. It defines the learning task as training a policy that inherits the characteristics of the prior policy while satisfying some additional requirements imposed by a target downstream task. We propose a novel and principled approach to interpret and determine the trade-off between the two task objectives. Specifically, we formulate the customization problem as a Markov Decision Process (MDP) with a reward function that combines 1) the inherent reward of the demonstration; and 2) the add-on reward specified by the downstream task. We propose a novel framework, Residual Q-learning, which can solve the formulated MDP by leveraging the prior policy without knowing the inherent reward or value function of the prior policy. We derive a family of residual Q-learning algorithms that can realize offline and online policy customization, and show that the proposed algorithms can effectively accomplish policy customization tasks in various environments. Demo videos and code are available on our website: https://sites.google.com/view/residualq-learning.
In-Distribution Barrier Functions: Self-Supervised Policy Filters that Avoid Out-of-Distribution States
Castaรฑeda, Fernando, Nishimura, Haruki, McAllister, Rowan, Sreenath, Koushil, Gaidon, Adrien
Learning-based control approaches have shown great promise in performing complex tasks directly from high-dimensional perception data for real robotic systems. Nonetheless, the learned controllers can behave unexpectedly if the trajectories of the system divert from the training data distribution, which can compromise safety. In this work, we propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations. Our methodology is inspired by Control Barrier Functions (CBFs), which are model-based tools from the nonlinear control literature that can be used to construct minimally invasive safe policy filters. While existing methods based on CBFs require a known low-dimensional state representation, our proposed approach is directly applicable to systems that rely solely on high-dimensional visual observations by learning in a latent state-space. We demonstrate that our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
RAP: Risk-Aware Prediction for Robust Planning
Nishimura, Haruki, Mercat, Jean, Wulfe, Blake, McAllister, Rowan, Gaidon, Adrien
In safety-critical and interactive control tasks such as autonomous driving, the robot must successfully account for uncertainty of the future motion of surrounding humans. To achieve this, many contemporary approaches decompose the decision-making pipeline into prediction and planning modules [1-5] for maintainability, debuggability, and interpretability. A prediction module, often learned from data, first produces likely future trajectories of surrounding agents, which are then consumed by a planning module for computing safe robot actions. Recent works [6, 7] further propose to couple prediction with risk-sensitive planning for enhanced safety, wherein the planner computes and minimizes a risk measure [8] of its planned trajectory based on probabilistic forecasts of human motion from the data-driven predictor. A risk measure is a functional that maps a cost distribution to a deterministic real number, which lies between the expected cost and the worst-case cost [9].
Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting for Safe Crowd-Robot Interaction
Nishimura, Haruki, Ivanovic, Boris, Gaidon, Adrien, Pavone, Marco, Schwager, Mac
This paper presents a novel online framework for safe crowd-robot interaction based on risk-sensitive stochastic optimal control, wherein the risk is modeled by the entropic risk measure. The sampling-based model predictive control relies on mode insertion gradient optimization for this risk measure as well as Trajectron++, a state-of-the-art generative model that produces multimodal probabilistic trajectory forecasts for multiple interacting agents. Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control, which is advantageous compared to end-to-end policy learning methods in that it allows the robot's desired behavior to be specified at run time. In particular, we show that the robot exhibits diverse interaction behavior by varying the risk sensitivity parameter. A simulation study and a real-world experiment show that the proposed online framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.