Goto

Collaborating Authors

 Ning, Yue


MPLite: Multi-Aspect Pretraining for Mining Clinical Health Records

arXiv.org Artificial Intelligence

The adoption of digital systems in healthcare has resulted in the accumulation of vast electronic health records (EHRs), offering valuable data for machine learning methods to predict patient health outcomes. However, single-visit records of patients are often neglected in the training process due to the lack of annotations of next-visit information, thereby limiting the predictive and expressive power of machine learning models. In this paper, we present a novel framework MPLite that utilizes Multi-aspect Pretraining with Lab results through a light-weight neural network to enhance medical concept representation and predict future health outcomes of individuals. By incorporating both structured medical data and additional information from lab results, our approach fully leverages patient admission records. We design a pretraining module that predicts medical codes based on lab results, ensuring robust prediction by fusing multiple aspects of features. Our experimental evaluation using both MIMIC-III and MIMIC-IV datasets demonstrates improvements over existing models in diagnosis prediction and heart failure prediction tasks, achieving a higher weighted-F1 and recall with MPLite. This work reveals the potential of integrating diverse aspects of data to advance predictive modeling in healthcare.


Understanding Student Sentiment on Mental Health Support in Colleges Using Large Language Models

arXiv.org Artificial Intelligence

Mental health support in colleges is vital in educating students by offering counseling services and organizing supportive events. However, evaluating its effectiveness faces challenges like data collection difficulties and lack of standardized metrics, limiting research scope. Student feedback is crucial for evaluation but often relies on qualitative analysis without systematic investigation using advanced machine learning methods. This paper uses public Student Voice Survey data to analyze student sentiments on mental health support with large language models (LLMs). We created a sentiment analysis dataset, SMILE-College, with human-machine collaboration. The investigation of both traditional machine learning methods and state-of-the-art LLMs showed the best performance of GPT-3.5 and BERT on this new dataset. The analysis highlights challenges in accurately predicting response sentiments and offers practical insights on how LLMs can enhance mental health-related research and improve college mental health services. This data-driven approach will facilitate efficient and informed mental health support evaluation, management, and decision-making.


DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains. There is a pressing need to enhance the generalizability of GNNs on out-of-distribution (OOD) test data. Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process, which do not adequately reflect the actual dynamics of distribution shifts in graphs. In this paper, we introduce a more realistic graph data generation model using Structural Causal Models (SCMs), allowing us to redefine distribution shifts by pinpointing their origins within the generation process. Building on this, we propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings. We provide a detailed theoretical framework that shows how our approach can effectively mitigate the impact of various distribution shifts. We evaluate DeCaf across both real-world and synthetic datasets that demonstrate different patterns of shifts, confirming its efficacy in enhancing the generalizability of GNNs.


DualMAR: Medical-Augmented Representation from Dual-Expertise Perspectives

arXiv.org Artificial Intelligence

Electronic Health Records (EHR) has revolutionized healthcare data management and prediction in the field of AI and machine learning. Accurate predictions of diagnosis and medications significantly mitigate health risks and provide guidance for preventive care. However, EHR driven models often have limited scope on understanding medical-domain knowledge and mostly rely on simple-and-sole ontologies. In addition, due to the missing features and incomplete disease coverage of EHR, most studies only focus on basic analysis on conditions and medication. We propose DualMAR, a framework that enhances EHR prediction tasks through both individual observation data and public knowledge bases. First, we construct a bi-hierarchical Diagnosis Knowledge Graph (KG) using verified public clinical ontologies and augment this KG via Large Language Models (LLMs); Second, we design a new proxy-task learning on lab results in EHR for pretraining, which further enhance KG representation and patient embeddings. By retrieving radial and angular coordinates upon polar space, DualMAR enables accurate predictions based on rich hierarchical and semantic embeddings from KG. Experiments also demonstrate that DualMAR outperforms state-of-the-art models, validating its effectiveness in EHR prediction and KG integration in medical domains.


Large Language Models as Event Forecasters

arXiv.org Artificial Intelligence

Key elements of human events are extracted as quadruples that consist of subject, relation, object, and timestamp. This representation can be extended to a quintuple by adding a fifth element: a textual summary that briefly describes the event. These quadruples or quintuples, when organized within a specific domain, form a temporal knowledge graph (TKG). Current learning frameworks focus on a few TKG-related tasks, such as predicting an object given a subject and a relation or forecasting the occurrences of multiple types of events (i.e., relation) in the next time window. They typically rely on complex structural and sequential models like graph neural networks (GNNs) and recurrent neural networks (RNNs) to update intermediate embeddings. However, these methods often neglect the contextual information inherent in each quintuple, which can be effectively captured through concise textual descriptions. In this paper, we investigate how large language models (LLMs) can streamline the design of TKG learning frameworks while maintaining competitive accuracy in prediction and forecasting tasks. We develop multiple prompt templates to frame the object prediction (OP) task as a standard question-answering (QA) task, suitable for instruction fine-tuning with an encoder-decoder generative LLM. For multi-event forecasting (MEF), we design simple yet effective prompt templates for each TKG quintuple. This novel approach removes the need for GNNs and RNNs, instead utilizing an encoder-only LLM to generate fixed intermediate embeddings, which are subsequently processed by a prediction head with a self-attention mechanism to forecast potential future relations. Extensive experiments on multiple real-world datasets using various evaluation metrics validate the effectiveness and robustness of our approach.


A Topology-aware Graph Coarsening Framework for Continual Graph Learning

arXiv.org Artificial Intelligence

Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion and the model tends to forget knowledge from previous tasks when updating with new data. Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs, however, these methods often face challenges such as inefficiency in preserving graph topology and incapability of capturing the correlation between old and new tasks. To address these challenges, we propose TA$\mathbb{CO}$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework that stores information from previous tasks as a reduced graph. At each time period, this reduced graph expands by combining with a new graph and aligning shared nodes, and then it undergoes a "zoom out" process by reduction to maintain a stable size. We design a graph coarsening algorithm based on node representation proximities to efficiently reduce a graph and preserve topological information. We empirically demonstrate the learning process on the reduced graph can approximate that of the original graph. Our experiments validate the effectiveness of the proposed framework on three real-world datasets using different backbone GNN models.


Equipping Federated Graph Neural Networks with Structure-aware Group Fairness

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have been widely used for various types of graph data processing and analytical tasks in different domains. Training GNNs over centralized graph data can be infeasible due to privacy concerns and regulatory restrictions. Thus, federated learning (FL) becomes a trending solution to address this challenge in a distributed learning paradigm. However, as GNNs may inherit historical bias from training data and lead to discriminatory predictions, the bias of local models can be easily propagated to the global model in distributed settings. This poses a new challenge in mitigating bias in federated GNNs. To address this challenge, we propose $\text{F}^2$GNN, a Fair Federated Graph Neural Network, that enhances group fairness of federated GNNs. As bias can be sourced from both data and learning algorithms, $\text{F}^2$GNN aims to mitigate both types of bias under federated settings. First, we provide theoretical insights on the connection between data bias in a training graph and statistical fairness metrics of the trained GNN models. Based on the theoretical analysis, we design $\text{F}^2$GNN which contains two key components: a fairness-aware local model update scheme that enhances group fairness of the local models on the client side, and a fairness-weighted global model update scheme that takes both data bias and fairness metrics of local models into consideration in the aggregation process. We evaluate $\text{F}^2$GNN empirically versus a number of baseline methods, and demonstrate that $\text{F}^2$GNN outperforms these baselines in terms of both fairness and model accuracy.


Towards Semi-Structured Automatic ICD Coding via Tree-based Contrastive Learning

arXiv.org Artificial Intelligence

Automatic coding of International Classification of Diseases (ICD) is a multi-label text categorization task that involves extracting disease or procedure codes from clinical notes. Despite the application of state-of-the-art natural language processing (NLP) techniques, there are still challenges including limited availability of data due to privacy constraints and the high variability of clinical notes caused by different writing habits of medical professionals and various pathological features of patients. In this work, we investigate the semi-structured nature of clinical notes and propose an automatic algorithm to segment them into sections. To address the variability issues in existing ICD coding models with limited data, we introduce a contrastive pre-training approach on sections using a soft multi-label similarity metric based on tree edit distance. Additionally, we design a masked section training strategy to enable ICD coding models to locate sections related to ICD codes. Extensive experimental results demonstrate that our proposed training strategies effectively enhance the performance of existing ICD coding methods.


Multi-Label Clinical Time-Series Generation via Conditional GAN

arXiv.org Artificial Intelligence

In recent years, deep learning has been successfully adopted in a wide range of applications related to electronic health records (EHRs) such as representation learning and clinical event prediction. However, due to privacy constraints, limited access to EHR becomes a bottleneck for deep learning research. To mitigate these concerns, generative adversarial networks (GANs) have been successfully used for generating EHR data. However, there are still challenges in high-quality EHR generation, including generating time-series EHR data and imbalanced uncommon diseases. In this work, we propose a Multi-label Time-series GAN (MTGAN) to generate EHR and simultaneously improve the quality of uncommon disease generation. The generator of MTGAN uses a gated recurrent unit (GRU) with a smooth conditional matrix to generate sequences and uncommon diseases. The critic gives scores using Wasserstein distance to recognize real samples from synthetic samples by considering both data and temporal features. We also propose a training strategy to calculate temporal features for real data and stabilize GAN training. Furthermore, we design multiple statistical metrics and prediction tasks to evaluate the generated data. Experimental results demonstrate the quality of the synthetic data and the effectiveness of MTGAN in generating realistic sequential EHR data, especially for uncommon diseases.


A Survey on Societal Event Forecasting with Deep Learning

arXiv.org Artificial Intelligence

Population-level societal events, such as civil unrest and crime, often have a significant impact on our daily life. Forecasting such events is of great importance for decision-making and resource allocation. Event prediction has traditionally been challenging due to the lack of knowledge regarding the true causes and underlying mechanisms of event occurrence. In recent years, research on event forecasting has made significant progress due to two main reasons: (1) the development of machine learning and deep learning algorithms and (2) the accessibility of public data such as social media, news sources, blogs, economic indicators, and other meta-data sources. The explosive growth of data and the remarkable advancement in software/hardware technologies have led to applications of deep learning techniques in societal event studies. This paper is dedicated to providing a systematic and comprehensive overview of deep learning technologies for societal event predictions. We focus on two domains of societal events: \textit{civil unrest} and \textit{crime}. We first introduce how event forecasting problems are formulated as a machine learning prediction task. Then, we summarize data resources, traditional methods, and recent development of deep learning models for these problems. Finally, we discuss the challenges in societal event forecasting and put forward some promising directions for future research.