Nie, Ping
ScholarCopilot: Training Large Language Models for Academic Writing with Accurate Citations
Wang, Yubo, Ma, Xueguang, Nie, Ping, Zeng, Huaye, Lyu, Zhiheng, Zhang, Yuxuan, Schneider, Benjamin, Lu, Yi, Yue, Xiang, Chen, Wenhu
Academic writing requires both coherent text generation and precise citation of relevant literature. Although recent Retrieval-Augmented Generation (RAG) systems have significantly improved factual accuracy in general-purpose text generation, their ability to support professional academic writing remains limited. In this work, we introduce ScholarCopilot, a unified framework designed to enhance existing large language models for generating professional academic articles with accurate and contextually relevant citations. ScholarCopilot dynamically determines when to retrieve scholarly references by generating a retrieval token [RET], which is then used to query a citation database. The retrieved references are fed into the model to augment the generation process. We jointly optimize both the generation and citation tasks within a single framework to improve efficiency. Our model is built upon Qwen-2.5-7B and trained on 500K papers from arXiv. It achieves a top-1 retrieval accuracy of 40.1% on our evaluation dataset, outperforming baselines such as E5-Mistral-7B-Instruct (15.0%) and BM25 (9.8%). On a dataset of 1,000 academic writing samples, ScholarCopilot scores 16.2/25 in generation quality -- measured across relevance, coherence, academic rigor, completeness, and innovation -- significantly surpassing all existing models, including much larger ones like the Retrieval-Augmented Qwen2.5-72B-Instruct. Human studies further demonstrate that ScholarCopilot, despite being a 7B model, significantly outperforms ChatGPT, achieving 100% preference in citation quality and over 70% in overall usefulness.
VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Jia, Yiming, Li, Jiachen, Yue, Xiang, Li, Bo, Nie, Ping, Zou, Kai, Chen, Wenhu
Vision-Language Models have made significant progress on many perception-focused tasks. However, their progress on reasoning-focused tasks remains limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity of reasoning-focused multimodal datasets. We propose VisualWebInstruct, a novel approach that leverages search engines to create a diverse and high-quality dataset spanning multiple disciplines, including mathematics, physics, finance, and chemistry, etc. Starting with a meticulously selected set of 30,000 seed images, we employ Google Image Search to identify websites containing similar images. We collect and process HTML data from over 700K unique URLs. Through a pipeline of content extraction, filtering, and synthesis, we construct a dataset of approximately 900K question-answer (QA) pairs, with 40% consisting of visual QA pairs and the remaining comprising text-based QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance improvements: (1) fine-tuning on Llava-OV results in 10-20 absolute points improvement across benchmarks, and (2) fine-tuning from MAmmoTH-VL yields a 5 absolute points gain across benchmarks. Our best model, MAmmoTH-VL2, achieves state-of-the-art performance within the 10B parameter class on MMMU-Pro (40.7), MathVerse (42.6), and DynaMath (55.7). These results highlight the effectiveness of our dataset in enhancing the reasoning capabilities of vision-language models for complex multimodal tasks.
ACECODER: Acing Coder RL via Automated Test-Case Synthesis
Zeng, Huaye, Jiang, Dongfu, Wang, Haozhe, Nie, Ping, Chen, Xiaotong, Chen, Wenhu
Most progress in recent coder models has been driven by supervised fine-tuning (SFT), while the potential of reinforcement learning (RL) remains largely unexplored, primarily due to the lack of reliable reward data/model in the code domain. In this paper, we address this challenge by leveraging automated large-scale test-case synthesis to enhance code model training. Specifically, we design a pipeline that generates extensive (question, test-cases) pairs from existing code data. Using these test cases, we construct preference pairs based on pass rates over sampled programs to train reward models with Bradley-Terry loss. It shows an average of 10-point improvement for Llama-3.1-8B-Ins and 5-point improvement for Qwen2.5-Coder-7B-Ins through best-of-32 sampling, making the 7B model on par with 236B DeepSeek-V2.5. Furthermore, we conduct reinforcement learning with both reward models and test-case pass rewards, leading to consistent improvements across HumanEval, MBPP, BigCodeBench, and LiveCodeBench (V4). Notably, we follow the R1-style training to start from Qwen2.5-Coder-base directly and show that our RL training can improve model on HumanEval-plus by over 25\% and MBPP-plus by 6\% for merely 80 optimization steps. We believe our results highlight the huge potential of reinforcement learning in coder models.
MoE-CAP: Cost-Accuracy-Performance Benchmarking for Mixture-of-Experts Systems
Fu, Yao, Jiang, Yinsicheng, Huang, Yeqi, Nie, Ping, Lu, Zhan, Xue, Leyang, He, Congjie, Sit, Man-Kit, Xue, Jilong, Dong, Li, Miao, Ziming, Zou, Kai, Ponti, Edoardo, Mai, Luo
The sparse Mixture-of-Experts (MoE) architecture is increasingly favored for scaling Large Language Models (LLMs) efficiently; however, MoE systems rely on heterogeneous compute and memory resources. These factors collectively influence the system's Cost, Accuracy, and Performance (CAP), creating a challenging trade-off. Current benchmarks often fail to provide precise estimates of these effects, complicating practical considerations for deploying MoE systems. To bridge this gap, we introduce MoE-CAP, a benchmark specifically designed to evaluate MoE systems. Our findings highlight the difficulty of achieving an optimal balance of cost, accuracy, and performance with existing hardware capabilities. MoE systems often necessitate compromises on one factor to optimize the other two, a dynamic we term the MoE-CAP trade-off. To identify the best trade-off, we propose novel performance evaluation metrics - Sparse Memory Bandwidth Utilization (S-MBU) and Sparse Model FLOPS Utilization (S-MFU) - and develop cost models that account for the heterogeneous compute and memory hardware integral to MoE systems. This benchmark is publicly available on HuggingFace: https://huggingface.co/spaces/sparse-generative-ai/open-moe-llm-leaderboard.
Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs
Zhou, Xin, Nie, Ping, Guo, Yiwen, Wei, Haojie, Zhang, Zhanqiu, Minervini, Pasquale, Ma, Ruotian, Gui, Tao, Zhang, Qi, Huang, Xuanjing
Retrieval-Augmented Generation (RAG) significantly improved the ability of Large Language Models (LLMs) to solve knowledge-intensive tasks. While existing research seeks to enhance RAG performance by retrieving higher-quality documents or designing RAG-specific LLMs, the internal mechanisms within LLMs that contribute to the effectiveness of RAG systems remain underexplored. In this paper, we aim to investigate these internal mechanisms within the popular Mixture-of-Expert (MoE)-based LLMs and demonstrate how to improve RAG by examining expert activations in these LLMs. Our controlled experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors. The activation of these core experts can signify the model's inclination towards external/internal knowledge and adjust its behavior. For instance, we identify core experts that can (1) indicate the sufficiency of the model's internal knowledge, (2) assess the quality of retrieved documents, and (3) enhance the model's ability to utilize context. Based on these findings, we propose several strategies to enhance RAG's efficiency and effectiveness through expert activation. Experimental results across various datasets and MoE-based LLMs show the effectiveness of our method.
The Hallucinations Leaderboard -- An Open Effort to Measure Hallucinations in Large Language Models
Hong, Giwon, Gema, Aryo Pradipta, Saxena, Rohit, Du, Xiaotang, Nie, Ping, Zhao, Yu, Perez-Beltrachini, Laura, Ryabinin, Max, He, Xuanli, Fourrier, Clรฉmentine, Minervini, Pasquale
Large Language Models (LLMs) have transformed the Natural Language Processing (NLP) landscape with their remarkable ability to understand and generate human-like text. However, these models are prone to ``hallucinations'' -- outputs that do not align with factual reality or the input context. This paper introduces the Hallucinations Leaderboard, an open initiative to quantitatively measure and compare the tendency of each model to produce hallucinations. The leaderboard uses a comprehensive set of benchmarks focusing on different aspects of hallucinations, such as factuality and faithfulness, across various tasks, including question-answering, summarisation, and reading comprehension. Our analysis provides insights into the performance of different models, guiding researchers and practitioners in choosing the most reliable models for their applications.
Beyond Prompting: Making Pre-trained Language Models Better Zero-shot Learners by Clustering Representations
Fei, Yu, Nie, Ping, Meng, Zhao, Wattenhofer, Roger, Sachan, Mrinmaya
Recent work has demonstrated that pre-trained language models (PLMs) are zero-shot learners. However, most existing zero-shot methods involve heavy human engineering or complicated self-training pipelines, hindering their application to new situations. In this work, we show that zero-shot text classification can be improved simply by clustering texts in the embedding spaces of PLMs. Specifically, we fit the unlabeled texts with a Bayesian Gaussian Mixture Model after initializing cluster positions and shapes using class names. Despite its simplicity, this approach achieves superior or comparable performance on both topic and sentiment classification datasets and outperforms prior works significantly on unbalanced datasets. We further explore the applicability of our clustering approach by evaluating it on 14 datasets with more diverse topics, text lengths, and numbers of classes. Our approach achieves an average of 20% absolute improvement over prompt-based zero-shot learning. Finally, we compare different PLM embedding spaces and find that texts are well-clustered by topics even if the PLM is not explicitly pre-trained to generate meaningful sentence embeddings. This work indicates that PLM embeddings can categorize texts without task-specific fine-tuning, thus providing a new way to analyze and utilize their knowledge and zero-shot learning ability.
Glyce: Glyph-vectors for Chinese Character Representations
Wu, Wei, Meng, Yuxian, Han, Qinghong, Li, Muyu, Li, Xiaoya, Mei, Jie, Nie, Ping, Sun, Xiaofei, Li, Jiwei
It is intuitive that NLP tasks for logographic languages like Chinese should benefit from the use of the glyph information in those languages. However, due to the lack of rich pictographic evidence in glyphs and the weak generalization ability of standard computer vision models on character data, an effective way to utilize the glyph information remains to be found. In this paper, we address this gap by presenting the Glyce, the glyph-vectors for Chinese character representations. We make three major innovations: (1) We use historical Chinese scripts (e.g., bronzeware script, seal script, traditional Chinese, etc) to enrich the pictographic evidence in characters; (2) We design CNN structures tailored to Chinese character image processing; and (3) We use image-classification as an auxiliary task in a multi-task learning setup to increase the model's ability to generalize. For the first time, we show that glyph-based models are able to consistently outperform word/char ID-based models in a wide range of Chinese NLP tasks. Using Glyce, we are able to achieve the state-of-the-art performances on 13 (almost all) Chinese NLP tasks, including (1) character-Level language modeling, (2) word-Level language modeling, (3) Chinese word segmentation, (4) name entity recognition, (5) part-of-speech tagging, (6) dependency parsing, (7) semantic role labeling, (8) sentence semantic similarity, (9) sentence intention identification, (10) Chinese-English machine translation, (11) sentiment analysis, (12) document classification and (13) discourse parsing