Goto

Collaborating Authors

 Nguyen, Toan


RoboDesign1M: A Large-scale Dataset for Robot Design Understanding

arXiv.org Artificial Intelligence

Robot design is a complex and time-consuming process that requires specialized expertise. Gaining a deeper understanding of robot design data can enable various applications, including automated design generation, retrieving example designs from text, and developing AI-powered design assistants. While recent advancements in foundation models present promising approaches to addressing these challenges, progress in this field is hindered by the lack of large-scale design datasets. In this paper, we introduce RoboDesign1M, a large-scale dataset comprising 1 million samples. Our dataset features multimodal data collected from scientific literature, covering various robotics domains. We propose a semi-automated data collection pipeline, enabling efficient and diverse data acquisition. To assess the effectiveness of RoboDesign1M, we conduct extensive experiments across multiple tasks, including design image generation, visual question answering about designs, and design image retrieval. The results demonstrate that our dataset serves as a challenging new benchmark for design understanding tasks and has the potential to advance research in this field. RoboDesign1M will be released to support further developments in AI-driven robotic design automation.


Bidirectional Diffusion Bridge Models

arXiv.org Artificial Intelligence

Diffusion bridges have shown potential in paired image-to-image (I2I) translation tasks. However, existing methods are limited by their unidirectional nature, requiring separate models for forward and reverse translations. This not only doubles the computational cost but also restricts their practicality. In this work, we introduce the Bidirectional Diffusion Bridge Model (BDBM), a scalable approach that facilitates bidirectional translation between two coupled distributions using a single network. BDBM leverages the Chapman-Kolmogorov Equation for bridges, enabling it to model data distribution shifts across timesteps in both forward and backward directions by exploiting the interchangeability of the initial and target timesteps within this framework. Notably, when the marginal distribution given endpoints is Gaussian, BDBM's transition kernels in both directions possess analytical forms, allowing for efficient learning with a single network. We demonstrate the connection between BDBM and existing bridge methods, such as Doob's h-transform and variational approaches, and highlight its advantages. Extensive experiments on high-resolution I2I translation tasks demonstrate that BDBM not only enables bidirectional translation with minimal additional cost but also outperforms state-of-the-art bridge models. Our source code is available at https://github.com/kvmduc/BDBM.


Crossing Linguistic Horizons: Finetuning and Comprehensive Evaluation of Vietnamese Large Language Models

arXiv.org Artificial Intelligence

We employ Large language models (LLMs) such as GPT-fine-tuning on the LLaMa-2, Mixtral 8 7B, 4 (OpenAI, 2023), BLOOM (Le Scao et al, Gemma, and conduct a comprehensive evaluation 2023), LLaMa-2 (Touvron et al, 2023), Mistral of Vietnamese LLMs across various scenarios and (Jiang et al., 2023), Mixtral (Jiang et al., 2024), settings. Throughout the thorough evaluation process, Gemma (Team et al., 2024) have made significant we observe the following: (i) larger language contributions to the field of natural language processing models exhibit unseen capabilities compared to (NLP). Despite their advancements, a gap smaller counterparts; (ii) larger language models remains in their specialization for many languages, tend to manifest more biases, produce uncalibrated including Vietnamese. This paper addresses the results, and are more susceptible to the influence development and evaluation of Vietnamese-centric of input prompts; (iii) the quality of training or LLMs. Vietnam, with a population surpassing 100 fine-tuning datasets is the key for unlocking LLM million, ranks as the 16th most populous country performance. Our key contributions include: globally.


Variational Flow Models: Flowing in Your Style

arXiv.org Artificial Intelligence

We introduce a variational inference interpretation for models of "posterior flows" - generalizations of "probability flows" to a broader class of stochastic processes not necessarily diffusion processes. We coin the resulting models as "Variational Flow Models". Additionally, we propose a systematic training-free method to transform the posterior flow of a "linear" stochastic process characterized by the equation Xt = at * X0 + st * X1 into a straight constant-speed (SC) flow, reminiscent of Rectified Flow. This transformation facilitates fast sampling along the original posterior flow without training a new model of the SC flow. The flexibility of our approach allows us to extend our transformation to inter-convert two posterior flows from distinct "linear" stochastic processes. Moreover, we can easily integrate high-order numerical solvers into the transformed SC flow, further enhancing sampling accuracy and efficiency. Rigorous theoretical analysis and extensive experimental results substantiate the advantages of our framework.


Domain Generalisation via Risk Distribution Matching

arXiv.org Artificial Intelligence

We propose a novel approach for domain generalisation (DG) leveraging risk distributions to characterise domains, thereby achieving domain invariance. In our findings, risk distributions effectively highlight differences between training domains and reveal their inherent complexities. In testing, we may observe similar, or potentially intensifying in magnitude, divergences between risk distributions. Hence, we propose a compelling proposition: Minimising the divergences between risk distributions across training domains leads to robust invariance for DG. The key rationale behind this concept is that a model, trained on domain-invariant or stable features, may consistently produce similar risk distributions across various domains. Building upon this idea, we propose Risk Distribution Matching (RDM). Using the maximum mean discrepancy (MMD) distance, RDM aims to minimise the variance of risk distributions across training domains. However, when the number of domains increases, the direct optimisation of variance leads to linear growth in MMD computations, resulting in inefficiency. Instead, we propose an approximation that requires only one MMD computation, by aligning just two distributions: that of the worst-case domain and the aggregated distribution from all domains. Notably, this method empirically outperforms optimising distributional variance while being computationally more efficient. Unlike conventional DG matching algorithms, RDM stands out for its enhanced efficacy by concentrating on scalar risk distributions, sidestepping the pitfalls of high-dimensional challenges seen in feature or gradient matching. Our extensive experiments on standard benchmark datasets demonstrate that RDM shows superior generalisation capability over state-of-the-art DG methods.


Open-Vocabulary Affordance Detection using Knowledge Distillation and Text-Point Correlation

arXiv.org Artificial Intelligence

Affordance detection presents intricate challenges and has a wide range of robotic applications. Previous works have faced limitations such as the complexities of 3D object shapes, the wide range of potential affordances on real-world objects, and the lack of open-vocabulary support for affordance understanding. In this paper, we introduce a new open-vocabulary affordance detection method in 3D point clouds, leveraging knowledge distillation and text-point correlation. Our approach employs pre-trained 3D models through knowledge distillation to enhance feature extraction and semantic understanding in 3D point clouds. We further introduce a new text-point correlation method to learn the semantic links between point cloud features and open-vocabulary labels. The intensive experiments show that our approach outperforms previous works and adapts to new affordance labels and unseen objects. Notably, our method achieves the improvement of 7.96% mIOU score compared to the baselines. Furthermore, it offers real-time inference which is well-suitable for robotic manipulation applications.


Language-Conditioned Affordance-Pose Detection in 3D Point Clouds

arXiv.org Artificial Intelligence

Affordance detection and pose estimation are of great importance in many robotic applications. Their combination helps the robot gain an enhanced manipulation capability, in which the generated pose can facilitate the corresponding affordance task. Previous methods for affodance-pose joint learning are limited to a predefined set of affordances, thus limiting the adaptability of robots in real-world environments. In this paper, we propose a new method for language-conditioned affordance-pose joint learning in 3D point clouds. Given a 3D point cloud object, our method detects the affordance region and generates appropriate 6-DoF poses for any unconstrained affordance label. Our method consists of an open-vocabulary affordance detection branch and a language-guided diffusion model that generates 6-DoF poses based on the affordance text. We also introduce a new high-quality dataset for the task of language-driven affordance-pose joint learning. Intensive experimental results demonstrate that our proposed method works effectively on a wide range of open-vocabulary affordances and outperforms other baselines by a large margin. In addition, we illustrate the usefulness of our method in real-world robotic applications. Our code and dataset are publicly available at https://3DAPNet.github.io


Open-Vocabulary Affordance Detection in 3D Point Clouds

arXiv.org Artificial Intelligence

Affordance detection is a challenging problem with a wide variety of robotic applications. Traditional affordance detection methods are limited to a predefined set of affordance labels, hence potentially restricting the adaptability of intelligent robots in complex and dynamic environments. In this paper, we present the Open-Vocabulary Affordance Detection (OpenAD) method, which is capable of detecting an unbounded number of affordances in 3D point clouds. By simultaneously learning the affordance text and the point feature, OpenAD successfully exploits the semantic relationships between affordances. Therefore, our proposed method enables zero-shot detection and can be able to detect previously unseen affordances without a single annotation example. Intensive experimental results show that OpenAD works effectively on a wide range of affordance detection setups and outperforms other baselines by a large margin. Additionally, we demonstrate the practicality of the proposed OpenAD in real-world robotic applications with a fast inference speed (~100ms). Our project is available at https://openad2023.github.io.


Causal Inference via Style Transfer for Out-of-distribution Generalisation

arXiv.org Artificial Intelligence

Out-of-distribution (OOD) generalisation aims to build a model that can generalise well on an unseen target domain using knowledge from multiple source domains. To this end, the model should seek the causal dependence between inputs and labels, which may be determined by the semantics of inputs and remain invariant across domains. However, statistical or non-causal methods often cannot capture this dependence and perform poorly due to not considering spurious correlations learnt from model training via unobserved confounders. A well-known existing causal inference method like back-door adjustment cannot be applied to remove spurious correlations as it requires the observation of confounders. In this paper, we propose a novel method that effectively deals with hidden confounders by successfully implementing front-door adjustment (FA). FA requires the choice of a mediator, which we regard as the semantic information of images that helps access the causal mechanism without the need for observing confounders. Further, we propose to estimate the combination of the mediator with other observed images in the front-door formula via style transfer algorithms. Our use of style transfer to estimate FA is novel and sensible for OOD generalisation, which we justify by extensive experimental results on widely used benchmark datasets.


Question-Context Alignment and Answer-Context Dependencies for Effective Answer Sentence Selection

arXiv.org Artificial Intelligence

Answer sentence selection (AS2) in open-domain question answering finds answer for a question by ranking candidate sentences extracted from web documents. Recent work exploits answer context, i.e., sentences around a candidate, by incorporating them as additional input string to the Transformer models to improve the correctness scoring. In this paper, we propose to improve the candidate scoring by explicitly incorporating the dependencies between question-context and answer-context into the final representation of a candidate. Specifically, we use Optimal Transport to compute the question-based dependencies among sentences in the passage where the answer is extracted from. We then represent these dependencies as edges in a graph and use Graph Convolutional Network to derive the representation of a candidate, a node in the graph. Our proposed model achieves significant improvements on popular AS2 benchmarks, i.e., WikiQA and WDRASS, obtaining new state-of-the-art on all benchmarks.