Nguyen, Minh-Duong
Federated Domain Generalization with Data-free On-server Gradient Matching
Nguyen, Trong-Binh, Nguyen, Minh-Duong, Park, Jinsun, Pham, Quoc-Viet, Hwang, Won Joo
Domain Generalization (DG) aims to learn from multiple known source domains a model that can generalize well to unknown target domains. One of the key approaches in DG is training an encoder which generates domain-invariant representations. However, this approach is not applicable in Federated Domain Generalization (FDG), where data from various domains are distributed across different clients. In this paper, we introduce a novel approach, dubbed Federated Learning via On-server Matching Gradient (FedOMG), which can \emph{efficiently leverage domain information from distributed domains}. Specifically, we utilize the local gradients as information about the distributed models to find an invariant gradient direction across all domains through gradient inner product maximization. The advantages are two-fold: 1) FedOMG can aggregate the characteristics of distributed models on the centralized server without incurring any additional communication cost, and 2) FedOMG is orthogonal to many existing FL/FDG methods, allowing for additional performance improvements by being seamlessly integrated with them. Extensive experimental evaluations on various settings to demonstrate the robustness of FedOMG compared to other FL/FDG baselines. Our method outperforms recent SOTA baselines on four FL benchmark datasets (MNIST, EMNIST, CIFAR-10, and CIFAR-100), and three FDG benchmark datasets (PACS, VLCS, and OfficeHome).
Multi-Agent Collaboration Mechanisms: A Survey of LLMs
Tran, Khanh-Tung, Dao, Dung, Nguyen, Minh-Duong, Pham, Quoc-Viet, O'Sullivan, Barry, Nguyen, Hoang D.
With recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.
Applications of Generative AI (GAI) for Mobile and Wireless Networking: A Survey
Vu, Thai-Hoc, Jagatheesaperumal, Senthil Kumar, Nguyen, Minh-Duong, Van Huynh, Nguyen, Kim, Sunghwan, Pham, Quoc-Viet
The success of Artificial Intelligence (AI) in multiple disciplines and vertical domains in recent years has promoted the evolution of mobile networking and the future Internet toward an AI-integrated Internet-of-Things (IoT) era. Nevertheless, most AI techniques rely on data generated by physical devices (e.g., mobile devices and network nodes) or specific applications (e.g., fitness trackers and mobile gaming). To bypass this circumvent, Generative AI (GAI), a.k.a. AI-generated content (AIGC), has emerged as a powerful AI paradigm; thanks to its ability to efficiently learn complex data distributions and generate synthetic data to represent the original data in various forms. This impressive feature is projected to transform the management of mobile networking and diversify the current services and applications provided. On this basis, this work presents a concise tutorial on the role of GAIs in mobile and wireless networking. In particular, this survey first provides the fundamentals of GAI and representative GAI models, serving as an essential preliminary to the understanding of the applications of GAI in mobile and wireless networking. Then, this work provides a comprehensive review of state-of-the-art studies and GAI applications in network management, wireless security, semantic communication, and lessons learned from the open literature. Finally, this work summarizes the current research on GAI for mobile and wireless networking by outlining important challenges that need to be resolved to facilitate the development and applicability of GAI in this edge-cutting area.
Sample-Driven Federated Learning for Energy-Efficient and Real-Time IoT Sensing
Luu, Minh Ngoc, Nguyen, Minh-Duong, Bedeer, Ebrahim, Nguyen, Van Duc, Hoang, Dinh Thai, Nguyen, Diep N., Pham, Quoc-Viet
In the domain of Federated Learning (FL) systems, recent cutting-edge methods heavily rely on ideal conditions convergence analysis. Specifically, these approaches assume that the training datasets on IoT devices possess similar attributes to the global data distribution. However, this approach fails to capture the full spectrum of data characteristics in real-time sensing FL systems. In order to overcome this limitation, we suggest a new approach system specifically designed for IoT networks with real-time sensing capabilities. Our approach takes into account the generalization gap due to the user's data sampling process. By effectively controlling this sampling process, we can mitigate the overfitting issue and improve overall accuracy. In particular, We first formulate an optimization problem that harnesses the sampling process to concurrently reduce overfitting while maximizing accuracy. In pursuit of this objective, our surrogate optimization problem is adept at handling energy efficiency while optimizing the accuracy with high generalization. To solve the optimization problem with high complexity, we introduce an online reinforcement learning algorithm, named Sample-driven Control for Federated Learning (SCFL) built on the Soft Actor-Critic (A2C) framework. This enables the agent to dynamically adapt and find the global optima even in changing environments. By leveraging the capabilities of SCFL, our system offers a promising solution for resource allocation in FL systems with real-time sensing capabilities.
Joint Communication and Computation Framework for Goal-Oriented Semantic Communication with Distortion Rate Resilience
Nguyen, Minh-Duong, Do, Quang-Vinh, Yang, Zhaohui, Pham, Quoc-Viet, Hwang, Won-Joo
Recent research efforts on semantic communication have mostly considered accuracy as a main problem for optimizing goal-oriented communication systems. However, these approaches introduce a paradox: the accuracy of artificial intelligence (AI) tasks should naturally emerge through training rather than being dictated by network constraints. Acknowledging this dilemma, this work introduces an innovative approach that leverages the rate-distortion theory to analyze distortions induced by communication and semantic compression, thereby analyzing the learning process. Specifically, we examine the distribution shift between the original data and the distorted data, thus assessing its impact on the AI model's performance. Founding upon this analysis, we can preemptively estimate the empirical accuracy of AI tasks, making the goal-oriented semantic communication problem feasible. To achieve this objective, we present the theoretical foundation of our approach, accompanied by simulations and experiments that demonstrate its effectiveness. The experimental results indicate that our proposed method enables accurate AI task performance while adhering to network constraints, establishing it as a valuable contribution to the field of signal processing. Furthermore, this work advances research in goal-oriented semantic communication and highlights the significance of data-driven approaches in optimizing the performance of intelligent systems.