Nguyen, Giang
GPU-Accelerated Motion Planning of an Underactuated Forestry Crane in Cluttered Environments
Vu, Minh Nhat, Ebmer, Gerald, Watcher, Alexander, Ecker, Marc-Philip, Nguyen, Giang, Glueck, Tobias
Autonomous large-scale machine operations require fast, efficient, and collision-free motion planning while addressing unique challenges such as hydraulic actuation limits and underactuated joint dynamics. This paper presents a novel two-step motion planning framework designed for an underactuated forestry crane. The first step employs GPU-accelerated stochastic optimization to rapidly compute a globally shortest collision-free path. The second step refines this path into a dynamically feasible trajectory using a trajectory optimizer that ensures compliance with system dynamics and actuation constraints. The proposed approach is benchmarked against conventional techniques, including RRT-based methods and purely optimization-based approaches. Simulation results demonstrate substantial improvements in computation speed and motion feasibility, making this method highly suitable for complex crane systems.
Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Cahyawijaya, Samuel, Lovenia, Holy, Moniz, Joel Ruben Antony, Wong, Tack Hwa, Farhansyah, Mohammad Rifqi, Maung, Thant Thiri, Hudi, Frederikus, Anugraha, David, Habibi, Muhammad Ravi Shulthan, Qorib, Muhammad Reza, Agarwal, Amit, Imperial, Joseph Marvin, Patel, Hitesh Laxmichand, Feliren, Vicky, Nasution, Bahrul Ilmi, Rufino, Manuel Antonio, Winata, Genta Indra, Rajagede, Rian Adam, Catalan, Carlos Rafael, Imam, Mohamed Fazli, Pattnayak, Priyaranjan, Pranida, Salsabila Zahirah, Pratama, Kevin, Bangera, Yeshil, Na-Thalang, Adisai, Monderin, Patricia Nicole, Song, Yueqi, Simon, Christian, Ng, Lynnette Hui Xian, Sapan, Richardy Lobo', Rafi, Taki Hasan, Wang, Bin, Supryadi, null, Veerakanjana, Kanyakorn, Ittichaiwong, Piyalitt, Roque, Matthew Theodore, Vincentio, Karissa, Kreangphet, Takdanai, Artkaew, Phakphum, Palgunadi, Kadek Hendrawan, Yu, Yanzhi, Hastuti, Rochana Prih, Nixon, William, Bangera, Mithil, Lim, Adrian Xuan Wei, Khine, Aye Hninn, Zhafran, Hanif Muhammad, Ferdinan, Teddy, Izzani, Audra Aurora, Singh, Ayushman, Evan, null, Krito, Jauza Akbar, Anugraha, Michael, Ilasariya, Fenal Ashokbhai, Li, Haochen, Daniswara, John Amadeo, Tjiaranata, Filbert Aurelian, Yulianrifat, Eryawan Presma, Udomcharoenchaikit, Can, Ansori, Fadil Risdian, Ihsani, Mahardika Krisna, Nguyen, Giang, Barik, Anab Maulana, Velasco, Dan John, Genadi, Rifo Ahmad, Saha, Saptarshi, Wei, Chengwei, Flores, Isaiah, Chen, Kenneth Ko Han, Santos, Anjela Gail, Lim, Wan Shen, Phyo, Kaung Si, Santos, Tim, Dwiastuti, Meisyarah, Luo, Jiayun, Cruz, Jan Christian Blaise, Hee, Ming Shan, Hanif, Ikhlasul Akmal, Hakim, M. Alif Al, Sya'ban, Muhammad Rizky, Kerdthaisong, Kun, Miranda, Lester James V., Koto, Fajri, Fatyanosa, Tirana Noor, Aji, Alham Fikri, Rosal, Jostin Jerico, Kevin, Jun, Wijaya, Robert, Kampman, Onno P., Zhang, Ruochen, Karlsson, Bรถrje F., Limkonchotiwat, Peerat
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
Visual correspondence-based explanations improve AI robustness and human-AI team accuracy
Nguyen, Giang, Taesiri, Mohammad Reza, Nguyen, Anh
Explaining artificial intelligence (AI) predictions is increasingly important and even imperative in many high-stakes applications where humans are the ultimate decision-makers. In this work, we propose two novel architectures of self-interpretable image classifiers that first explain, and then predict (as opposed to post-hoc explanations) by harnessing the visual correspondences between a query image and exemplars. Our models consistently improve (by 1 to 4 points) on out-of-distribution (OOD) datasets while performing marginally worse (by 1 to 2 points) on in-distribution tests than ResNet-50 and a $k$-nearest neighbor classifier (kNN). Via a large-scale, human study on ImageNet and CUB, our correspondence-based explanations are found to be more useful to users than kNN explanations. Our explanations help users more accurately reject AI's wrong decisions than all other tested methods. Interestingly, for the first time, we show that it is possible to achieve complementary human-AI team accuracy (i.e., that is higher than either AI-alone or human-alone), in ImageNet and CUB image classification tasks.
Fix Fairness, Don't Ruin Accuracy: Performance Aware Fairness Repair using AutoML
Nguyen, Giang, Biswas, Sumon, Rajan, Hridesh
Machine learning (ML) is increasingly being used in critical decision-making software, but incidents have raised questions about the fairness of ML predictions. To address this issue, new tools and methods are needed to mitigate bias in ML-based software. Previous studies have proposed bias mitigation algorithms that only work in specific situations and often result in a loss of accuracy. Our proposed solution is a novel approach that utilizes automated machine learning (AutoML) techniques to mitigate bias. Our approach includes two key innovations: a novel optimization function and a fairness-aware search space. By improving the default optimization function of AutoML and incorporating fairness objectives, we are able to mitigate bias with little to no loss of accuracy. Additionally, we propose a fairness-aware search space pruning method for AutoML to reduce computational cost and repair time. Our approach, built on the state-of-the-art Auto-Sklearn tool, is designed to reduce bias in real-world scenarios. In order to demonstrate the effectiveness of our approach, we evaluated our approach on four fairness problems and 16 different ML models, and our results show a significant improvement over the baseline and existing bias mitigation techniques. Our approach, Fair-AutoML, successfully repaired 60 out of 64 buggy cases, while existing bias mitigation techniques only repaired up to 44 out of 64 cases.
Semi-supervised Neural Machine Translation with Consistency Regularization for Low-Resource Languages
Pham, Viet H., Pham, Thang M., Nguyen, Giang, Nguyen, Long, Dinh, Dien
The advent of deep learning has led to a significant gain in machine translation. However, most of the studies required a large parallel dataset which is scarce and expensive to construct and even unavailable for some languages. This paper presents a simple yet effective method to tackle this problem for low-resource languages by augmenting high-quality sentence pairs and training NMT models in a semi-supervised manner. Specifically, our approach combines the cross-entropy loss for supervised learning with KL Divergence for unsupervised fashion given pseudo and augmented target sentences derived from the model. We also introduce a SentenceBERT-based filter to enhance the quality of augmenting data by retaining semantically similar sentence pairs. Experimental results show that our approach significantly improves NMT baselines, especially on low-resource datasets with 0.46--2.03 BLEU scores. We also demonstrate that using unsupervised training for augmented data is more efficient than reusing the ground-truth target sentences for supervised learning.
Overcoming Catastrophic Forgetting by XAI
Nguyen, Giang
Explaining the behaviors of deep neural networks, usually considered as black boxes, is critical especially when they are now being adopted over diverse aspects of human life. Taking the advantages of interpretable machine learning (interpretable ML), this work proposes a novel tool called Catastrophic Forgetting Dissector (or CFD) to explain catastrophic forgetting in continual learning settings. We also introduce a new method called Critical Freezing based on the observations of our tool. Experiments on ResNet articulate how catastrophic forgetting happens, particularly showing which components of this famous network are forgetting. Our new continual learning algorithm defeats various recent techniques by a significant margin, proving the capability of the investigation. Critical freezing not only attacks catastrophic forgetting but also exposes explainability.
The effectiveness of feature attribution methods and its correlation with automatic evaluation scores
Nguyen, Giang, Kim, Daeyoung, Nguyen, Anh
Explaining the decisions of an Artificial Intelligence (AI) model is increasingly critical in many real-world, high-stake applications. Hundreds of papers have either proposed new feature attribution methods, discussed or harnessed these tools in their work. However, despite humans being the target end-users, most attribution methods were only evaluated on proxy automatic-evaluation metrics [52, 66, 68]. In this paper, we conduct the first, large-scale user study on 320 lay and 11 expert users to shed light on the effectiveness of state-of-the-art attribution methods in assisting humans in ImageNet classification, Stanford Dogs fine-grained classification, and these two tasks but when the input image contains adversarial perturbations. We found that, in overall, feature attribution is surprisingly not more effective than showing humans nearest training-set examples. On a hard task of fine-grained dog categorization, presenting attribution maps to humans does not help, but instead hurts the performance of human-AI teams compared to AI alone. Importantly, we found automatic attribution-map evaluation measures to correlate poorly with the actual human-AI team performance. Our findings encourage the community to rigorously test their methods on the downstream human-in-the-loop applications and to rethink the existing evaluation metrics.
Temporal Network Representation Learning
Lee, John Boaz, Nguyen, Giang, Rossi, Ryan A., Ahmed, Nesreen K., Koh, Eunyee, Kim, Sungchul
Networks evolve continuously over time with the addition, deletion, and changing of links and nodes. Such temporal networks (or edge streams) consist of a sequence of timestamped edges and are seemingly ubiquitous. Despite the importance of accurately modeling the temporal information, most embedding methods ignore it entirely or approximate the temporal network using a sequence of static snapshot graphs. In this work, we introduce the notion of \emph{temporal walks} for learning dynamic embeddings from temporal networks. Temporal walks capture the temporally valid interactions (\eg, flow of information, spread of disease) in the dynamic network in a lossless fashion. Based on the notion of temporal walks, we describe a general class of embeddings called continuous-time dynamic network embeddings (CTDNEs) that completely avoid the issues and problems that arise when approximating the temporal network as a sequence of static snapshot graphs. Unlike previous work, CTDNEs learn dynamic node embeddings directly from the temporal network at the finest temporal granularity and thus use only temporally valid information. As such CTDNEs naturally support online learning of the node embeddings in a streaming real-time fashion. The experiments demonstrate the effectiveness of this class of embedding methods for prediction in temporal networks.