Goto

Collaborating Authors

 Nearing, Grey


AI Increases Global Access to Reliable Flood Forecasts

arXiv.org Artificial Intelligence

Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks. Accurate and timely warnings are critical for mitigating flood risks, but hydrological simulation models typically must be calibrated to long data records in each watershed. Using AI, we achieve reliability in predicting extreme riverine events in ungauged watersheds at up to a 5-day lead time that is similar to or better than the reliability of nowcasts (0-day lead time) from a current state of the art global modeling system (the Copernicus Emergency Management Service Global Flood Awareness System). Additionally, we achieve accuracies over 5-year return period events that are similar to or better than current accuracies over 1-year return period events. This means that AI can provide flood warnings earlier and over larger and more impactful events in ungauged basins. The model developed in this paper was incorporated into an operational early warning system that produces publicly available (free and open) forecasts in real time in over 80 countries. This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.


A Machine Learning Data Fusion Model for Soil Moisture Retrieval

arXiv.org Artificial Intelligence

Soil moisture is one of the primary hydrological state (memory) variables in terrestrial systems (Dobriyal et al. 2012; Rossato et al. 2017a), and is one of the primary controls for agriculture and water management (Dobriyal et al. 2012; Rossato et al. 2017b). Soil moisture affects evapotranspiration and vegetation water availability, which are at the core of the climate-carbon cycle (Falloon et al. 2011) and play an important role in hydrological risks such as floods, drought, erosion, and landslides (Kim et al. 2019; Legates et al. 2011; Tramblay et al. 2012). Accurate measurement of soil moisture has numerous downstream benefits (Moran et al. 2015) including reduced water wastage by better understanding and managing the consumption of water (Brocca et al. 2018; Foster, Mieno, and Brozović 2020), utilising smarter irrigation methods (Kumar et al. 2014) and effective canal water management (Zafar, Prathapar, and Bastiaanssen 2021). The most accurate way to measure soil moisture is via ground-based methods such as direct gravimetric measurements (Klute 1986) or indirect methods such as dielectric reflectometry, capacitance charge, etc. (Bittelli 2011), which in-situ sensors utilize (Walker, Willgoose, and Kalma 2004). However, in-situ sensors are difficult to scale spatially, and are expensive to install and maintain.


MC-LSTM: Mass-Conserving LSTM

arXiv.org Machine Learning

The success of Convolutional Neural Networks (CNNs) in computer vision is mainly driven by their strong inductive bias, which is strong enough to allow CNNs to solve vision-related tasks with random weights, meaning without learning. Similarly, Long Short-Term Memory (LSTM) has a strong inductive bias towards storing information over time. However, many real-world systems are governed by conservation laws, which lead to the redistribution of particular quantities -- e.g. in physical and economical systems. Our novel Mass-Conserving LSTM (MC-LSTM) adheres to these conservation laws by extending the inductive bias of LSTM to model the redistribution of those stored quantities. MC-LSTMs set a new state-of-the-art for neural arithmetic units at learning arithmetic operations, such as addition tasks, which have a strong conservation law, as the sum is constant over time. Further, MC-LSTM is applied to traffic forecasting, modelling a pendulum, and a large benchmark dataset in hydrology, where it sets a new state-of-the-art for predicting peak flows. In the hydrology example, we show that MC-LSTM states correlate with real-world processes and are therefore interpretable.


Benchmarking a Catchment-Aware Long Short-Term Memory Network (LSTM) for Large-Scale Hydrological Modeling

arXiv.org Machine Learning

Regional rainfall-runoff modeling is an old but still mostly out-standing problem in Hydrological Sciences. The problem currently is that traditional hydrological models degrade significantly in performance when calibrated for multiple basins together instead of for a single basin alone. In this paper, we propose a novel, data-driven approach using Long Short-Term Memory networks (LSTMs), and demonstrate that under a 'big data' paradigm, this is not necessarily the case. By training a single LSTM model on 531 basins from the CAMELS data set using meteorological time series data and static catchment attributes, we were able to significantly improve performance compared to a set of several different hydrological benchmark models. Our proposed approach not only significantly outperforms hydrological models that were calibrated regionally but also achieves better performance than hydrological models that were calibrated for each basin individually. Furthermore, we propose an adaption to the standard LSTM architecture, which we call an Entity-Aware-LSTM (EA-LSTM), that allows for learning, and embedding as a feature layer in a deep learning model, catchment similarities. We show that this learned catchment similarity corresponds well with what we would expect from prior hydrological understanding.