Naseriparsa, Mehdi
ED-Filter: Dynamic Feature Filtering for Eating Disorder Classification
Naseriparsa, Mehdi, Sukunesan, Suku, Cai, Zhen, Alfarraj, Osama, Tolba, Amr, Rabooki, Saba Fathi, Xia, Feng
Eating disorders (ED) are critical psychiatric problems that have alarmed the mental health community. Mental health professionals are increasingly recognizing the utility of data derived from social media platforms such as Twitter. However, high dimensionality and extensive feature sets of Twitter data present remarkable challenges for ED classification. To overcome these hurdles, we introduce a novel method, an informed branch and bound search technique known as ED-Filter. This strategy significantly improves the drawbacks of conventional feature selection algorithms such as filters and wrappers. ED-Filter iteratively identifies an optimal set of promising features that maximize the eating disorder classification accuracy. In order to adapt to the dynamic nature of Twitter ED data, we enhance the ED-Filter with a hybrid greedy-based deep learning algorithm. This algorithm swiftly identifies sub-optimal features to accommodate the ever-evolving data landscape. Experimental results on Twitter eating disorder data affirm the effectiveness and efficiency of ED-Filter. The method demonstrates significant improvements in classification accuracy and proves its value in eating disorder detection on social media platforms.
Knowledge Graphs: Opportunities and Challenges
Peng, Ciyuan, Xia, Feng, Naseriparsa, Mehdi, Osborne, Francesco
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally important to organize and represent the enormous volume of knowledge appropriately. As graph data, knowledge graphs accumulate and convey knowledge of the real world. It has been well-recognized that knowledge graphs effectively represent complex information; hence, they rapidly gain the attention of academia and industry in recent years. Thus to develop a deeper understanding of knowledge graphs, this paper presents a systematic overview of this field. Specifically, we focus on the opportunities and challenges of knowledge graphs. We first review the opportunities of knowledge graphs in terms of two aspects: (1) AI systems built upon knowledge graphs; (2) potential application fields of knowledge graphs. Then, we thoroughly discuss severe technical challenges in this field, such as knowledge graph embeddings, knowledge acquisition, knowledge graph completion, knowledge fusion, and knowledge reasoning. We expect that this survey will shed new light on future research and the development of knowledge graphs.