Nakamura, Satoshi
Development of a Large-scale Dataset of Chest Computed Tomography Reports in Japanese and a High-performance Finding Classification Model
Yamagishi, Yosuke, Nakamura, Yuta, Kikuchi, Tomohiro, Sonoda, Yuki, Hirakawa, Hiroshi, Kano, Shintaro, Nakamura, Satoshi, Hanaoka, Shouhei, Yoshikawa, Takeharu, Abe, Osamu
Background: Recent advances in large language models highlight the need for high-quality multilingual medical datasets. While Japan leads globally in CT scanner deployment and utilization, the lack of large-scale Japanese radiology datasets has hindered the development of specialized language models for medical imaging analysis. Objective: To develop a comprehensive Japanese CT report dataset through machine translation and establish a specialized language model for structured finding classification. Additionally, to create a rigorously validated evaluation dataset through expert radiologist review. Methods: We translated the CT-RATE dataset (24,283 CT reports from 21,304 patients) into Japanese using GPT-4o mini. The training dataset consisted of 22,778 machine-translated reports, while the validation dataset included 150 radiologist-revised reports. We developed CT-BERT-JPN based on "tohoku-nlp/bert-base-japanese-v3" architecture for extracting 18 structured findings from Japanese radiology reports. Results: Translation metrics showed strong performance with BLEU scores of 0.731 and 0.690, and ROUGE scores ranging from 0.770 to 0.876 for Findings and from 0.748 to 0.857 for Impression sections. CT-BERT-JPN demonstrated superior performance compared to GPT-4o in 11 out of 18 conditions, including lymphadenopathy (+14.2%), interlobular septal thickening (+10.9%), and atelectasis (+7.4%). The model maintained F1 scores exceeding 0.95 in 14 out of 18 conditions and achieved perfect scores in four conditions. Conclusions: Our study establishes a robust Japanese CT report dataset and demonstrates the effectiveness of a specialized language model for structured finding classification. The hybrid approach of machine translation and expert validation enables the creation of large-scale medical datasets while maintaining high quality.
A Transformer Model for Segmentation, Classification, and Caller Identification of Marmoset Vocalization
Wu, Bin, Takamichi, Shinnosuke, Sakti, Sakriani, Nakamura, Satoshi
Marmoset, a highly vocalized primate, has become a popular animal model for studying social-communicative behavior and its underlying mechanism comparing with human infant linguistic developments. In the study of vocal communication, it is vital to know the caller identities, call contents, and vocal exchanges. Previous work of a CNN has achieved a joint model for call segmentation, classification, and caller identification for marmoset vocalizations. However, the CNN has limitations in modeling long-range acoustic patterns; the Transformer architecture that has been shown to outperform CNNs, utilizes the self-attention mechanism that efficiently segregates information parallelly over long distances and captures the global structure of marmoset vocalization. We propose using the Transformer to jointly segment and classify the marmoset calls and identify the callers for each vocalization.
Findings of the IWSLT 2024 Evaluation Campaign
Ahmad, Ibrahim Said, Anastasopoulos, Antonios, Bojar, Ondřej, Borg, Claudia, Carpuat, Marine, Cattoni, Roldano, Cettolo, Mauro, Chen, William, Dong, Qianqian, Federico, Marcello, Haddow, Barry, Javorský, Dávid, Krubiński, Mateusz, Lam, Tsz Kin, Ma, Xutai, Mathur, Prashant, Matusov, Evgeny, Maurya, Chandresh, McCrae, John, Murray, Kenton, Nakamura, Satoshi, Negri, Matteo, Niehues, Jan, Niu, Xing, Ojha, Atul Kr., Ortega, John, Papi, Sara, Polák, Peter, Pospíšil, Adam, Pecina, Pavel, Salesky, Elizabeth, Sethiya, Nivedita, Sarkar, Balaram, Shi, Jiatong, Sikasote, Claytone, Sperber, Matthias, Stüker, Sebastian, Sudoh, Katsuhito, Thompson, Brian, Turchi, Marco, Waibel, Alex, Watanabe, Shinji, Wilken, Patrick, Zemánek, Petr, Zevallos, Rodolfo
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Word Order in English-Japanese Simultaneous Interpretation: Analyses and Evaluation using Chunk-wise Monotonic Translation
Doi, Kosuke, Ko, Yuka, Makinae, Mana, Sudoh, Katsuhito, Nakamura, Satoshi
This paper analyzes the features of monotonic translations, which follow the word order of the source language, in simultaneous interpreting (SI). Word order differences are one of the biggest challenges in SI, especially for language pairs with significant structural differences like English and Japanese. We analyzed the characteristics of chunk-wise monotonic translation (CMT) sentences using the NAIST English-to-Japanese Chunk-wise Monotonic Translation Evaluation Dataset and identified some grammatical structures that make monotonic translation difficult in English-Japanese SI. We further investigated the features of CMT sentences by evaluating the output from the existing speech translation (ST) and simultaneous speech translation (simulST) models on the NAIST English-to-Japanese Chunk-wise Monotonic Translation Evaluation Dataset as well as on existing test sets. The results indicate the possibility that the existing SI-based test set underestimates the model performance. The results also suggest that using CMT sentences as references gives higher scores to simulST models than ST models, and that using an offline-based test set to evaluate the simulST models underestimates the model performance.
A Word Order Synchronization Metric for Evaluating Simultaneous Interpretation and Translation
Makinae, Mana, Sudoh, Katsuhito, Yamada, Mararu, Nakamura, Satoshi
Simultaneous interpretation (SI), the translation of one language to another in real time, starts translation before the original speech has finished. Its evaluation needs to consider both latency and quality. This trade-off is challenging especially for distant word order language pairs such as English and Japanese. To handle this word order gap, interpreters maintain the word order of the source language as much as possible to keep up with original language to minimize its latency while maintaining its quality, whereas in translation reordering happens to keep fluency in the target language. This means outputs synchronized with the source language are desirable based on the real SI situation, and it's a key for further progress in computational SI and simultaneous machine translation (SiMT). In this work, we propose an automatic evaluation metric for SI and SiMT focusing on word order synchronization. Our evaluation metric is based on rank correlation coefficients, leveraging cross-lingual pre-trained language models. Our experimental results on NAIST-SIC-Aligned and JNPC showed our metrics' effectiveness to measure word order synchronization between source and target language.
NAIST Simultaneous Speech Translation System for IWSLT 2024
Ko, Yuka, Fukuda, Ryo, Nishikawa, Yuta, Kano, Yasumasa, Yanagita, Tomoya, Doi, Kosuke, Makinae, Mana, Tan, Haotian, Sakai, Makoto, Sakti, Sakriani, Sudoh, Katsuhito, Nakamura, Satoshi
This paper describes NAIST's submission to the simultaneous track of the IWSLT 2024 Evaluation Campaign: English-to-{German, Japanese, Chinese} speech-to-text translation and English-to-Japanese speech-to-speech translation. We develop a multilingual end-to-end speech-to-text translation model combining two pre-trained language models, HuBERT and mBART. We trained this model with two decoding policies, Local Agreement (LA) and AlignAtt. The submitted models employ the LA policy because it outperformed the AlignAtt policy in previous models. Our speech-to-speech translation method is a cascade of the above speech-to-text model and an incremental text-to-speech (TTS) module that incorporates a phoneme estimation model, a parallel acoustic model, and a parallel WaveGAN vocoder. We improved our incremental TTS by applying the Transformer architecture with the AlignAtt policy for the estimation model. The results show that our upgraded TTS module contributed to improving the system performance.
Automated Essay Scoring Using Grammatical Variety and Errors with Multi-Task Learning and Item Response Theory
Doi, Kosuke, Sudoh, Katsuhito, Nakamura, Satoshi
This study examines the effect of grammatical features in automatic essay scoring (AES). We use two kinds of grammatical features as input to an AES model: (1) grammatical items that writers used correctly in essays, and (2) the number of grammatical errors. Experimental results show that grammatical features improve the performance of AES models that predict the holistic scores of essays. Multi-task learning with the holistic and grammar scores, alongside using grammatical features, resulted in a larger improvement in model performance. We also show that a model using grammar abilities estimated using Item Response Theory (IRT) as the labels for the auxiliary task achieved comparable performance to when we used grammar scores assigned by human raters. In addition, we weight the grammatical features using IRT to consider the difficulty of grammatical items and writers' grammar abilities. We found that weighting grammatical features with the difficulty led to further improvement in performance.
TransLLaMa: LLM-based Simultaneous Translation System
Koshkin, Roman, Sudoh, Katsuhito, Nakamura, Satoshi
Decoder-only large language models (LLMs) have recently demonstrated impressive capabilities in text generation and reasoning. Nonetheless, they have limited applications in simultaneous machine translation (SiMT), currently dominated by encoder-decoder transformers. This study demonstrates that, after fine-tuning on a small dataset comprising causally aligned source and target sentence pairs, a pre-trained open-source LLM can control input segmentation directly by generating a special "wait" token. This obviates the need for a separate policy and enables the LLM to perform English-German and English-Russian SiMT tasks with BLEU scores that are comparable to those of specific state-of-the-art baselines. We also evaluated closed-source models such as GPT-4, which displayed encouraging results in performing the SiMT task without prior training (zero-shot), indicating a promising avenue for enhancing future SiMT systems.
Response Generation for Cognitive Behavioral Therapy with Large Language Models: Comparative Study with Socratic Questioning
Izumi, Kenta, Tanaka, Hiroki, Shidara, Kazuhiro, Adachi, Hiroyoshi, Kanayama, Daisuke, Kudo, Takashi, Nakamura, Satoshi
Dialogue systems controlled by predefined or rule-based scenarios derived from counseling techniques, such as cognitive behavioral therapy (CBT), play an important role in mental health apps. Despite the need for responsible responses, it is conceivable that using the newly emerging LLMs to generate contextually relevant utterances will enhance these apps. In this study, we construct dialogue modules based on a CBT scenario focused on conventional Socratic questioning using two kinds of LLMs: a Transformer-based dialogue model further trained with a social media empathetic counseling dataset, provided by Osaka Prefecture (OsakaED), and GPT-4, a state-of-the art LLM created by OpenAI. By comparing systems that use LLM-generated responses with those that do not, we investigate the impact of generated responses on subjective evaluations such as mood change, cognitive change, and dialogue quality (e.g., empathy). As a result, no notable improvements are observed when using the OsakaED model. When using GPT-4, the amount of mood change, empathy, and other dialogue qualities improve significantly. Results suggest that GPT-4 possesses a high counseling ability. However, they also indicate that even when using a dialogue model trained with a human counseling dataset, it does not necessarily yield better outcomes compared to scenario-based dialogues. While presenting LLM-generated responses, including GPT-4, and having them interact directly with users in real-life mental health care services may raise ethical issues, it is still possible for human professionals to produce example responses or response templates using LLMs in advance in systems that use rules, scenarios, or example responses.
Average Token Delay: A Duration-aware Latency Metric for Simultaneous Translation
Kano, Yasumasa, Sudoh, Katsuhito, Nakamura, Satoshi
Simultaneous translation is a task in which the translation begins before the end of an input speech segment. Its evaluation should be conducted based on latency in addition to quality, and for users, the smallest possible amount of latency is preferable. Most existing metrics measure latency based on the start timings of partial translations and ignore their duration. This means such metrics do not penalize the latency caused by long translation output, which delays the comprehension of users and subsequent translations. In this work, we propose a novel latency evaluation metric for simultaneous translation called \emph{Average Token Delay} (ATD) that focuses on the duration of partial translations. We demonstrate its effectiveness through analyses simulating user-side latency based on Ear-Voice Span (EVS). In our experiment, ATD had the highest correlation with EVS among baseline latency metrics under most conditions.