Nah, Wan Jun
EndoUIC: Promptable Diffusion Transformer for Unified Illumination Correction in Capsule Endoscopy
Bai, Long, Chen, Tong, Tan, Qiaozhi, Nah, Wan Jun, Li, Yanheng, He, Zhicheng, Yuan, Sishen, Chen, Zhen, Wu, Jinlin, Islam, Mobarakol, Li, Zhen, Liu, Hongbin, Ren, Hongliang
Wireless Capsule Endoscopy (WCE) is highly valued for its non-invasive and painless approach, though its effectiveness is compromised by uneven illumination from hardware constraints and complex internal dynamics, leading to overexposed or underexposed images. While researchers have discussed the challenges of low-light enhancement in WCE, the issue of correcting for different exposure levels remains underexplored. To tackle this, we introduce EndoUIC, a WCE unified illumination correction solution using an end-to-end promptable diffusion transformer (DiT) model. In our work, the illumination prompt module shall navigate the model to adapt to different exposure levels and perform targeted image enhancement, in which the Adaptive Prompt Integration (API) and Global Prompt Scanner (GPS) modules shall further boost the concurrent representation learning between the prompt parameters and features. Besides, the U-shaped restoration DiT model shall capture the long-range dependencies and contextual information for unified illumination restoration. Moreover, we present a novel Capsule-endoscopy Exposure Correction (CEC) dataset, including ground-truth and corrupted image pairs annotated by expert photographers. Extensive experiments against a variety of state-of-the-art (SOTA) methods on four datasets showcase the effectiveness of our proposed method and components in WCE illumination restoration, and the additional downstream experiments further demonstrate its utility for clinical diagnosis and surgical assistance.
Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery
Wang, Guankun, Bai, Long, Nah, Wan Jun, Wang, Jie, Zhang, Zhaoxi, Chen, Zhen, Wu, Jinlin, Islam, Mobarakol, Liu, Hongbin, Ren, Hongliang
Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.