Myers, Vivek
Multi-Agent Inverse Q-Learning from Demonstrations
Haynam, Nathaniel, Khoja, Adam, Kumar, Dhruv, Myers, Vivek, Bıyık, Erdem
When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .
Temporal Representation Alignment: Successor Features Enable Emergent Compositionality in Robot Instruction Following
Myers, Vivek, Zheng, Bill Chunyuan, Dragan, Anca, Fang, Kuan, Levine, Sergey
Effective task representations should facilitate compositionality, such that after learning a variety of basic tasks, an agent can perform compound tasks consisting of multiple steps simply by composing the representations of the constituent steps together. While this is conceptually simple and appealing, it is not clear how to automatically learn representations that enable this sort of compositionality. We show that learning to associate the representations of current and future states with a temporal alignment loss can improve compositional generalization, even in the absence of any explicit subtask planning or reinforcement learning. We evaluate our approach across diverse robotic manipulation tasks as well as in simulation, showing substantial improvements for tasks specified with either language or goal images.
Horizon Generalization in Reinforcement Learning
Myers, Vivek, Ji, Catherine, Eysenbach, Benjamin
We study goal-conditioned RL through the lens of generalization, but not in the traditional sense of random augmentations and domain randomization. Rather, we aim to learn goal-directed policies that generalize with respect to the horizon: after training to reach nearby goals (which are easy to learn), these policies should succeed in reaching distant goals (which are quite challenging to learn). In the same way that invariance is closely linked with generalization is other areas of machine learning (e.g., normalization layers make a network invariant to scale, and therefore generalize to inputs of varying scales), we show that this notion of horizon generalization is closely linked with invariance to planning: a policy navigating towards a goal will select the same actions as if it were navigating to a waypoint en route to that goal. Thus, such a policy trained to reach nearby goals should succeed at reaching arbitrarily-distant goals. Our theoretical analysis proves that both horizon generalization and planning invariance are possible, under some assumptions. We present new experimental results and recall findings from prior work in support of our theoretical results. Taken together, our results open the door to studying how techniques for invariance and generalization developed in other areas of machine learning might be adapted to achieve this alluring property.
Learning to Assist Humans without Inferring Rewards
Myers, Vivek, Ellis, Evan, Levine, Sergey, Eysenbach, Benjamin, Dragan, Anca
Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area -- scalability to high-dimensional settings -- with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
Learning Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-Making
Myers, Vivek, Zheng, Chongyi, Dragan, Anca, Levine, Sergey, Eysenbach, Benjamin
Temporal distances lie at the heart of many algorithms for planning, control, and reinforcement learning that involve reaching goals, allowing one to estimate the transit time between two states. However, prior attempts to define such temporal distances in stochastic settings have been stymied by an important limitation: these prior approaches do not satisfy the triangle inequality. This is not merely a definitional concern, but translates to an inability to generalize and find shortest paths. In this paper, we build on prior work in contrastive learning and quasimetrics to show how successor features learned by contrastive learning (after a change of variables) form a temporal distance that does satisfy the triangle inequality, even in stochastic settings. Importantly, this temporal distance is computationally efficient to estimate, even in high-dimensional and stochastic settings. Experiments in controlled settings and benchmark suites demonstrate that an RL algorithm based on these new temporal distances exhibits combinatorial generalization (i.e., "stitching") and can sometimes learn more quickly than prior methods, including those based on quasimetrics.
Coprocessor Actor Critic: A Model-Based Reinforcement Learning Approach For Adaptive Brain Stimulation
Pan, Michelle, Schrum, Mariah, Myers, Vivek, Bıyık, Erdem, Dragan, Anca
Adaptive brain stimulation can treat neurological conditions such as Parkinson's disease and post-stroke motor deficits by influencing abnormal neural activity. Because of patient heterogeneity, each patient requires a unique stimulation policy to achieve optimal neural responses. Model-free reinforcement learning (MFRL) holds promise in learning effective policies for a variety of similar control tasks, but is limited in domains like brain stimulation by a need for numerous costly environment interactions. In this work we introduce Coprocessor Actor Critic, a novel, model-based reinforcement learning (MBRL) approach for learning neural coprocessor policies for brain stimulation. Our key insight is that coprocessor policy learning is a combination of learning how to act optimally in the world and learning how to induce optimal actions in the world through stimulation of an injured brain. We show that our approach overcomes the limitations of traditional MFRL methods in terms of sample efficiency and task success and outperforms baseline MBRL approaches in a neurologically realistic model of an injured brain.
Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference
Eysenbach, Benjamin, Myers, Vivek, Salakhutdinov, Ruslan, Levine, Sergey
Given time series data, how can we answer questions like "what will happen in the future?" and "how did we get here?" These sorts of probabilistic inference questions are challenging when observations are high-dimensional. In this paper, we show how these questions can have compact, closed form solutions in terms of learned representations. The key idea is to apply a variant of contrastive learning to time series data. Prior work already shows that the representations learned by contrastive learning encode a probability ratio. By extending prior work to show that the marginal distribution over representations is Gaussian, we can then prove that joint distribution of representations is also Gaussian. Taken together, these results show that representations learned via temporal contrastive learning follow a Gauss-Markov chain, a graphical model where inference (e.g., prediction, planning) over representations corresponds to inverting a low-dimensional matrix. In one special case, inferring intermediate representations will be equivalent to interpolating between the learned representations. We validate our theory using numerical simulations on tasks up to 46-dimensions.
BridgeData V2: A Dataset for Robot Learning at Scale
Walke, Homer, Black, Kevin, Lee, Abraham, Kim, Moo Jin, Du, Max, Zheng, Chongyi, Zhao, Tony, Hansen-Estruch, Philippe, Vuong, Quan, He, Andre, Myers, Vivek, Fang, Kuan, Finn, Chelsea, Levine, Sergey
We introduce BridgeData V2, a large and diverse dataset of robotic manipulation behaviors designed to facilitate research on scalable robot learning. BridgeData V2 contains 60,096 trajectories collected across 24 environments on a publicly available low-cost robot. BridgeData V2 provides extensive task and environment variability, leading to skills that can generalize across environments, domains, and institutions, making the dataset a useful resource for a broad range of researchers. Additionally, the dataset is compatible with a wide variety of open-vocabulary, multi-task learning methods conditioned on goal images or natural language instructions. In our experiments, we train 6 state-of-the-art imitation learning and offline reinforcement learning methods on our dataset, and find that they succeed on a suite of tasks requiring varying amounts of generalization. We also demonstrate that the performance of these methods improves with more data and higher capacity models, and that training on a greater variety of skills leads to improved generalization. By publicly sharing BridgeData V2 and our pre-trained models, we aim to accelerate research in scalable robot learning methods. Project page at https://rail-berkeley.github.io/bridgedata
Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control
Myers, Vivek, He, Andre, Fang, Kuan, Walke, Homer, Hansen-Estruch, Philippe, Cheng, Ching-An, Jalobeanu, Mihai, Kolobov, Andrey, Dragan, Anca, Levine, Sergey
Our goal is for robots to follow natural language instructions like "put the towel next to the microwave." But getting large amounts of labeled data, i.e. data that contains demonstrations of tasks labeled with the language instruction, is prohibitive. In contrast, obtaining policies that respond to image goals is much easier, because any autonomous trial or demonstration can be labeled in hindsight with its final state as the goal. In this work, we contribute a method that taps into joint image- and goal- conditioned policies with language using only a small amount of language data. Prior work has made progress on this using vision-language models or by jointly training language-goal-conditioned policies, but so far neither method has scaled effectively to real-world robot tasks without significant human annotation. Our method achieves robust performance in the real world by learning an embedding from the labeled data that aligns language not to the goal image, but rather to the desired change between the start and goal images that the instruction corresponds to. We then train a policy on this embedding: the policy benefits from all the unlabeled data, but the aligned embedding provides an interface for language to steer the policy. We show instruction following across a variety of manipulation tasks in different scenes, with generalization to language instructions outside of the labeled data. Videos and code for our approach can be found on our website: https://rail-berkeley.github.io/grif/ .
Toward Grounded Social Reasoning
Kwon, Minae, Hu, Hengyuan, Myers, Vivek, Karamcheti, Siddharth, Dragan, Anca, Sadigh, Dorsa
Consider a robot tasked with tidying a desk with a meticulously constructed Lego sports car. A human may recognize that it is not socially appropriate to disassemble the sports car and put it away as part of the "tidying". How can a robot reach that conclusion? Although large language models (LLMs) have recently been used to enable social reasoning, grounding this reasoning in the real world has been challenging. To reason in the real world, robots must go beyond passively querying LLMs and *actively gather information from the environment* that is required to make the right decision. For instance, after detecting that there is an occluded car, the robot may need to actively perceive the car to know whether it is an advanced model car made out of Legos or a toy car built by a toddler. We propose an approach that leverages an LLM and vision language model (VLM) to help a robot actively perceive its environment to perform grounded social reasoning. To evaluate our framework at scale, we release the MessySurfaces dataset which contains images of 70 real-world surfaces that need to be cleaned. We additionally illustrate our approach with a robot on 2 carefully designed surfaces. We find an average 12.9% improvement on the MessySurfaces benchmark and an average 15% improvement on the robot experiments over baselines that do not use active perception. The dataset, code, and videos of our approach can be found at https://minaek.github.io/groundedsocialreasoning.