Muzellec, Sabine
Enhancing deep neural networks through complex-valued representations and Kuramoto synchronization dynamics
Muzellec, Sabine, Alamia, Andrea, Serre, Thomas, VanRullen, Rufin
Neural synchrony is hypothesized to play a crucial role in how the brain organizes visual scenes into structured representations, enabling the robust encoding of multiple objects within a scene. However, current deep learning models often struggle with object binding, limiting their ability to represent multiple objects effectively. Inspired by neuroscience, we investigate whether synchrony-based mechanisms can enhance object encoding in artificial models trained for visual categorization. Specifically, we combine complex-valued representations with Kuramoto dynamics to promote phase alignment, facilitating the grouping of features belonging to the same object. We evaluate two architectures employing synchrony: a feedforward model and a recurrent model with feedback connections to refine phase synchronization using top-down information. Both models outperform their real-valued counterparts and complex-valued models without Kuramoto synchronization on tasks involving multi-object images, such as overlapping handwritten digits, noisy inputs, and out-of-distribution transformations. Our findings highlight the potential of synchrony-driven mechanisms to enhance deep learning models, improving their performance, robustness, and generalization in complex visual categorization tasks.
Tracking objects that change in appearance with phase synchrony
Muzellec, Sabine, Linsley, Drew, Ashok, Alekh K., Mingolla, Ennio, Malik, Girik, VanRullen, Rufin, Serre, Thomas
Objects we encounter often change appearance as we interact with them. Changes in illumination (shadows), object pose, or movement of nonrigid objects can drastically alter available image features. How do biological visual systems track objects as they change? It may involve specific attentional mechanisms for reasoning about the locations of objects independently of their appearances -- a capability that prominent neuroscientific theories have associated with computing through neural synchrony. We computationally test the hypothesis that the implementation of visual attention through neural synchrony underlies the ability of biological visual systems to track objects that change in appearance over time. We first introduce a novel deep learning circuit that can learn to precisely control attention to features separately from their location in the world through neural synchrony: the complex-valued recurrent neural network (CV-RNN). Next, we compare object tracking in humans, the CV-RNN, and other deep neural networks (DNNs), using FeatureTracker: a large-scale challenge that asks observers to track objects as their locations and appearances change in precisely controlled ways. While humans effortlessly solved FeatureTracker, state-of-the-art DNNs did not. In contrast, our CV-RNN behaved similarly to humans on the challenge, providing a computational proof-of-concept for the role of phase synchronization as a neural substrate for tracking appearance-morphing objects as they move about.
Gradient strikes back: How filtering out high frequencies improves explanations
Muzellec, Sabine, Andéol, Léo, Fel, Thomas, VanRullen, Rufin, Serre, Thomas
Recent years have witnessed an explosion in the development of novel prediction-based attribution methods, which have slowly been supplanting older gradient-based methods to explain the decisions of deep neural networks. However, it is still not clear why prediction-based methods outperform gradient-based ones. Here, we start with an empirical observation: these two approaches yield attribution maps with very different power spectra, with gradient-based methods revealing more high-frequency content than prediction-based methods. This observation raises multiple questions: What is the source of this high-frequency information, and does it truly reflect decisions made by the system? Lastly, why would the absence of high-frequency information in prediction-based methods yield better explainability scores along multiple metrics? We analyze the gradient of three representative visual classification models and observe that it contains noisy information emanating from high-frequencies. Furthermore, our analysis reveals that the operations used in Convolutional Neural Networks (CNNs) for downsampling appear to be a significant source of this high-frequency content -- suggesting aliasing as a possible underlying basis. We then apply an optimal low-pass filter for attribution maps and demonstrate that it improves gradient-based attribution methods. We show that (i) removing high-frequency noise yields significant improvements in the explainability scores obtained with gradient-based methods across multiple models -- leading to (ii) a novel ranking of state-of-the-art methods with gradient-based methods at the top. We believe that our results will spur renewed interest in simpler and computationally more efficient gradient-based methods for explainability.