Muyama, Lillian
Step-by-Step Guidance to Differential Anemia Diagnosis with Real-World Data and Deep Reinforcement Learning
Muyama, Lillian, Lu, Estelle, Cheminet, Geoffrey, Pouchot, Jacques, Rance, Bastien, Tropeano, Anne-Isabelle, Neuraz, Antoine, Coulet, Adrien
Clinical diagnostic guidelines outline the key questions to answer to reach a diagnosis. Inspired by guidelines, we aim to develop a model that learns from electronic health records to determine the optimal sequence of actions for accurate diagnosis. Focusing on anemia and its sub-types, we employ deep reinforcement learning (DRL) algorithms and evaluate their performance on both a synthetic dataset, which is based on expert-defined diagnostic pathways, and a real-world dataset. We investigate the performance of these algorithms across various scenarios. Our experimental results demonstrate that DRL algorithms perform competitively with state-of-the-art methods while offering the significant advantage of progressively generating pathways to the suggested diagnosis, providing a transparent decision-making process that can guide and explain diagnostic reasoning.
Prompting Large Language Models for Supporting the Differential Diagnosis of Anemia
Castagnari, Elisa, Muyama, Lillian, Coulet, Adrien
In practice, clinicians achieve a diagnosis by following a sequence of steps, such as laboratory exams, observations, or imaging. The pathways to reach diagnosis decisions are documented by guidelines authored by expert organizations, which guide clinicians to reach a correct diagnosis through these sequences of steps. While these guidelines are beneficial for following medical reasoning and consolidating medical knowledge, they have some drawbacks. They often fail to address patients with uncommon conditions due to their focus on the majority population, and are slow and costly to update, making them unsuitable for rapidly emerging diseases or new practices. Inspired by clinical guidelines, our study aimed to develop pathways similar to those that can be obtained in clinical guidelines. We tested three Large Language Models (LLMs) -Generative Pretrained Transformer 4 (GPT-4), Large Language Model Meta AI (LLaMA), and Mistral -on a synthetic yet realistic dataset to differentially diagnose anemia and its subtypes. By using advanced prompting techniques to enhance the decision-making process, we generated diagnostic pathways using these models. Experimental results indicate that LLMs hold huge potential in clinical pathway discovery from patient data, with GPT-4 exhibiting the best performance in all conducted experiments.
Deep Reinforcement Learning for Personalized Diagnostic Decision Pathways Using Electronic Health Records: A Comparative Study on Anemia and Systemic Lupus Erythematosus
Muyama, Lillian, Neuraz, Antoine, Coulet, Adrien
Background: Clinical diagnosis is typically reached by following a series of steps recommended by guidelines authored by colleges of experts. Accordingly, guidelines play a crucial role in rationalizing clinical decisions but suffer from limitations as they are built to cover the majority of the population and fail at covering patients with uncommon conditions. Moreover, their updates are long and expensive, making them unsuitable for emerging diseases and practices. Methods: Inspired by guidelines, we formulate the task of diagnosis as a sequential decision-making problem and study the use of Deep Reinforcement Learning (DRL) algorithms to learn the optimal sequence of actions to perform in order to obtain a correct diagnosis from Electronic Health Records (EHRs). We apply DRL on synthetic, but realistic EHRs and develop two clinical use cases: Anemia diagnosis, where the decision pathways follow the schema of a decision tree; and Systemic Lupus Erythematosus (SLE) diagnosis, which follows a weighted criteria score. We particularly evaluate the robustness of our approaches to noisy and missing data since these frequently occur in EHRs. Results: In both use cases, and in the presence of imperfect data, our best DRL algorithms exhibit competitive performance when compared to the traditional classifiers, with the added advantage that they enable the progressive generation of a pathway to the suggested diagnosis which can both guide and explain the decision-making process. Conclusion: DRL offers the opportunity to learn personalized decision pathways to diagnosis. We illustrate with our two use cases their advantages: they generate step-by-step pathways that are self-explanatory; and their correctness is competitive when compared to state-of-the-art approaches.
Extracting Diagnosis Pathways from Electronic Health Records Using Deep Reinforcement Learning
Muyama, Lillian, Neuraz, Antoine, Coulet, Adrien
Clinical diagnosis guidelines aim at specifying the steps that may lead to a diagnosis. Inspired by guidelines, we aim to learn the optimal sequence of actions to perform in order to obtain a correct diagnosis from electronic health records. We apply various deep reinforcement learning algorithms to this task and experiment on a synthetic but realistic dataset to differentially diagnose anemia and its subtypes and particularly evaluate the robustness of various approaches to noise and missing data. Experimental results show that the deep reinforcement learning algorithms show competitive performance compared to the state-of-the-art methods with the added advantage that they enable the progressive generation of a pathway to the suggested diagnosis, which can both guide and explain the decision process.