Murthy, Rudra
Granite Embedding Models
Awasthy, Parul, Trivedi, Aashka, Li, Yulong, Bornea, Mihaela, Cox, David, Daniels, Abraham, Franz, Martin, Goodhart, Gabe, Iyer, Bhavani, Kumar, Vishwajeet, Lastras, Luis, McCarley, Scott, Murthy, Rudra, P, Vignesh, Rosenthal, Sara, Roukos, Salim, Sen, Jaydeep, Sharma, Sukriti, Sil, Avirup, Soule, Kate, Sultan, Arafat, Florian, Radu
We introduce the Granite Embedding models, a family of encoder-based embedding models designed for retrieval tasks, spanning dense-retrieval and sparse-retrieval architectures, with both English and Multilingual capabilities. This report provides the technical details of training these highly effective 12 layer embedding models, along with their efficient 6 layer distilled counterparts. Extensive evaluations show that the models, developed with techniques like retrieval oriented pretraining, contrastive finetuning, knowledge distillation, and model merging significantly outperform publicly available models of similar sizes on both internal IBM retrieval and search tasks, and have equivalent performance on widely-used information retrieval benchmarks, while being trained on high-quality data suitable for enterprise use. We publicly release all our Granite Embedding models under the Apache 2.0 license, allowing both research and commercial use at https://huggingface.co/collections/ibm-granite . Figure 1: Average performance on the Granite embedding models (in blue) vs BGE, GTE, Snowflake, E5, and Nomic models on 5 QA and IR datasets: BEIR, ClapNQ, CoIR, RedHat, and UnifiedSearch (the last 2 are internal IBM datasets). The goal of text embedding models is to convert variable length text into a fixed vector, encoding the text semantics into a multidimensional vector in such a way that semantically close texts are close in the vector space, while dissimilar texts have a low similarity. These embeddings can then be used in a variety of tasks, most commonly in retrieval applications, where the relevance of a document to a given query can be determined by the similarity of their embeddings (Dunn et al., 2017; Xiong et al., 2020; Neelakantan et al., 2022)(Zamani et al., 2018; Zhao et al., 2020), but also in document clustering (Angelov, 2020) and text classification (Sun et al., 2019). See Contributions section for full author list.
MILU: A Multi-task Indic Language Understanding Benchmark
Verma, Sshubam, Khan, Mohammed Safi Ur Rahman, Kumar, Vishwajeet, Murthy, Rudra, Sen, Jaydeep
Evaluating Large Language Models (LLMs) in low-resource and linguistically diverse languages remains a significant challenge in NLP, particularly for languages using non-Latin scripts like those spoken in India. Existing benchmarks predominantly focus on English, leaving substantial gaps in assessing LLM capabilities in these languages. We introduce MILU, a Multi task Indic Language Understanding Benchmark, a comprehensive evaluation benchmark designed to address this gap. MILU spans 8 domains and 42 subjects across 11 Indic languages, reflecting both general and culturally specific knowledge. With an India-centric design, incorporates material from regional and state-level examinations, covering topics such as local history, arts, festivals, and laws, alongside standard subjects like science and mathematics. We evaluate over 45 LLMs, and find that current LLMs struggle with MILU, with GPT-4o achieving the highest average accuracy at 72 percent. Open multilingual models outperform language-specific fine-tuned models, which perform only slightly better than random baselines. Models also perform better in high resource languages as compared to low resource ones. Domain-wise analysis indicates that models perform poorly in culturally relevant areas like Arts and Humanities, Law and Governance compared to general fields like STEM. To the best of our knowledge, MILU is the first of its kind benchmark focused on Indic languages, serving as a crucial step towards comprehensive cultural evaluation. All code, benchmarks, and artifacts are publicly available to foster open research.
Evaluating the Instruction-following Abilities of Language Models using Knowledge Tasks
Murthy, Rudra, Kumar, Prince, Venkateswaran, Praveen, Contractor, Danish
In this work, we focus our attention on developing a benchmark for instruction-following where it is easy to verify both task performance as well as instruction-following capabilities. We adapt existing knowledge benchmarks and augment them with instructions that are a) conditional on correctly answering the knowledge task or b) use the space of candidate options in multiple-choice knowledge-answering tasks. This allows us to study model characteristics, such as their change in performance on the knowledge tasks in the presence of answer-modifying instructions and distractor instructions. In contrast to existing benchmarks for instruction following, we not only measure instruction-following capabilities but also use LLM-free methods to study task performance. We study a series of openly available large language models of varying parameter sizes (1B-405B) and closed source models namely GPT-4o-mini, GPT-4o. We find that even large-scale instruction-tuned LLMs fail to follow simple instructions in zero-shot settings. We release our dataset, the benchmark, code, and results for future work.
INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages
Singh, Abhishek Kumar, Murthy, Rudra, kumar, Vishwajeet, Sen, Jaydeep, Ramakrishnan, Ganesh
Large Language Models (LLMs) have demonstrated remarkable zero-shot and few-shot capabilities in unseen tasks, including context-grounded question answering (QA) in English. However, the evaluation of LLMs' capabilities in non-English languages for context-based QA is limited by the scarcity of benchmarks in non-English languages. To address this gap, we introduce Indic-QA, the largest publicly available context-grounded question-answering dataset for 11 major Indian languages from two language families. The dataset comprises both extractive and abstractive question-answering tasks and includes existing datasets as well as English QA datasets translated into Indian languages. Additionally, we generate a synthetic dataset using the Gemini model to create question-answer pairs given a passage, which is then manually verified for quality assurance. We evaluate various multilingual Large Language Models and their instruction-fine-tuned variants on the benchmark and observe that their performance is subpar, particularly for low-resource languages. We hope that the release of this dataset will stimulate further research on the question-answering abilities of LLMs for low-resource languages.
Airavata: Introducing Hindi Instruction-tuned LLM
Gala, Jay, Jayakumar, Thanmay, Husain, Jaavid Aktar, M, Aswanth Kumar, Khan, Mohammed Safi Ur Rahman, Kanojia, Diptesh, Puduppully, Ratish, Khapra, Mitesh M., Dabre, Raj, Murthy, Rudra, Kunchukuttan, Anoop
The last year has witnessed tremendous interest and activity in the world of Large Language Models (LLMs). LLMs hold the potential to unlock exciting applications in artificial intelligence thanks to their ability to comprehend complex natural language instructions and excel in a broad spectrum of tasks involving language, knowledge, reasoning, and creative generation. To foster research, innovation, and widespread adoption, an open ecosystem is essential. We have observed significant advancements in this area with the launch of models like Llama 2 (Touvron et al., 2023) and Mistral (Jiang et al., 2023), as well as their instruction-tuned variants such as Llama 2 Chat (Touvron et al., 2023), Mistral-Instruct (Jiang et al., 2023), and Zephyr (Tunstall et al., 2023), among others. However, most of these advancements have been predominantly centered on the English language. There is limited support for Indian languages, which can be attributed to the incidental inclusion of some Indian language data that slipped through the data filters during the pre-training of these language models.
PUB: A Pragmatics Understanding Benchmark for Assessing LLMs' Pragmatics Capabilities
Sravanthi, Settaluri Lakshmi, Doshi, Meet, Kalyan, Tankala Pavan, Murthy, Rudra, Bhattacharyya, Pushpak, Dabre, Raj
LLMs have demonstrated remarkable capability for understanding semantics, but they often struggle with understanding pragmatics. To demonstrate this fact, we release a Pragmatics Understanding Benchmark (PUB) dataset consisting of fourteen tasks in four pragmatics phenomena, namely, Implicature, Presupposition, Reference, and Deixis. We curated high-quality test sets for each task, consisting of Multiple Choice Question Answers (MCQA). PUB includes a total of 28k data points, 6.1k of which have been created by us, and the rest are adapted from existing datasets. We evaluated nine models varying in the number of parameters and type of training. Our study indicates that fine-tuning for instruction-following and chat significantly enhances the pragmatics capabilities of smaller language models. However, for larger models, the base versions perform comparably with their chat-adapted counterparts. Additionally, there is a noticeable performance gap between human capabilities and model capabilities. Furthermore, unlike the consistent performance of humans across various tasks, the models demonstrate variability in their proficiency, with performance levels fluctuating due to different hints and the complexities of tasks within the same dataset. Overall, the benchmark aims to provide a comprehensive evaluation of LLM's ability to handle real-world language tasks that require pragmatic reasoning.
StarCoder: may the source be with you!
Li, Raymond, Allal, Loubna Ben, Zi, Yangtian, Muennighoff, Niklas, Kocetkov, Denis, Mou, Chenghao, Marone, Marc, Akiki, Christopher, Li, Jia, Chim, Jenny, Liu, Qian, Zheltonozhskii, Evgenii, Zhuo, Terry Yue, Wang, Thomas, Dehaene, Olivier, Davaadorj, Mishig, Lamy-Poirier, Joel, Monteiro, João, Shliazhko, Oleh, Gontier, Nicolas, Meade, Nicholas, Zebaze, Armel, Yee, Ming-Ho, Umapathi, Logesh Kumar, Zhu, Jian, Lipkin, Benjamin, Oblokulov, Muhtasham, Wang, Zhiruo, Murthy, Rudra, Stillerman, Jason, Patel, Siva Sankalp, Abulkhanov, Dmitry, Zocca, Marco, Dey, Manan, Zhang, Zhihan, Fahmy, Nour, Bhattacharyya, Urvashi, Yu, Wenhao, Singh, Swayam, Luccioni, Sasha, Villegas, Paulo, Kunakov, Maxim, Zhdanov, Fedor, Romero, Manuel, Lee, Tony, Timor, Nadav, Ding, Jennifer, Schlesinger, Claire, Schoelkopf, Hailey, Ebert, Jan, Dao, Tri, Mishra, Mayank, Gu, Alex, Robinson, Jennifer, Anderson, Carolyn Jane, Dolan-Gavitt, Brendan, Contractor, Danish, Reddy, Siva, Fried, Daniel, Bahdanau, Dzmitry, Jernite, Yacine, Ferrandis, Carlos Muñoz, Hughes, Sean, Wolf, Thomas, Guha, Arjun, von Werra, Leandro, de Vries, Harm
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python, can be prompted to achieve 40\% pass@1 on HumanEval, and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.
Cognitively Aided Zero-Shot Automatic Essay Grading
Mathias, Sandeep, Murthy, Rudra, Kanojia, Diptesh, Bhattacharyya, Pushpak
Automatic essay grading (AEG) is a process in which machines assign a grade to an essay written in response to a topic, called the prompt. Zero-shot AEG is when we train a system to grade essays written to a new prompt which was not present in our training data. In this paper, we describe a solution to the problem of zero-shot automatic essay grading, using cognitive information, in the form of gaze behaviour. Our experiments show that using gaze behaviour helps in improving the performance of AEG systems, especially when we provide a new essay written in response to a new prompt for scoring, by an average of almost 5 percentage points of QWK.